Quantum Atoms

(Lecture id-1050)

TOPICS & OBJECTIVES

1010 - de Broglie Hypothesis
    1010 - Relate the Davison-Thomson double slit experiment, explain its observations.
    1020 - Explain de Broglies hypothesis, explain how an electron can have wave properties.
    1030 - Relate and apply de Broglies equation for wave length of particles.
    1040 - Know the complementarity of position and velocity through Heisenbergs equation.
    1050 - Know the similarities and differences in classical and quantum-mechanical concepts of trajectory.
    1060 - Differentiate between deterministic and indeterminacy.
 
1020 - Schrodingers Equation
    1010 - Define orbital and wave function.
    1020 - Know the Schrodinger equation is how we calculate energies and orbitals for electrons in atoms.
    1030 - Know the properties and allowed values of the principal quantum number, n.
    1040 - Know the properties, values, and letter designations of the angular momentum quantum number, l.
    1050 - Know the properties and allowed values of the magnetic quantum number, ml.
    1060 - Know and understand how atomic spectroscopy defines the energy levels of electrons in the hydrogen atom.
    1070 - Calculate the energies and wavelengths of emitted and absorbed photons for hydrogen.
 
1030 - Atomic Orbitals
    1010 - Define probability density and radial distribution function.
    1020 - Define and understand nodes.
    1030 - Identify the number of nodes in a radial distribution function for an s orbital.
    1040 - Know the shapes of s, p, d, and f orbitals and the relationships to quantum numbers.
    1050 - Know that the shape of an atom is dictated by the combined shapes of the collection of orbitals for that atom.
    1060 - Given a value of the principle quantum number, show the designations of all possible sub-shells.
    1070 - Recognize the orbital shapes associated with each energy level and sublevel.
    1080 - Be able to draw the relative orbital shape and size for s and p orbitals.
    1090 - Define and understand phase.
 


   ChemLectures™ v. 1.5 © 1992-2024 Nick DeMello Ph.D.