

Carbohydrates and more complex structures. Understanding their nature and chiral shapes.

version 1.0

© Nick DeMello, PhD. 2007-2015

CO₂H

OH

OH

ΟН

HO,

HO

ACHN

Carbohydrates

- Definition & Examples
- > Place in the Food Chain
 - Photosynthesis & Respiration
- Classification
 - Monosaccharides
 - Aldose and Ketose; 3-8 Carbons
- Chirality
 - Molecular Identity
 - Composition (1D), Connectivity (2D)
 - Shape (3D) can contain chirality
 - chiral vs achiral
 - Isomers:
 - Structural isomers
 - Stereo-isomers
 - Chiral Carbons
 - Enantiomeric Molecules
 - Showing Chirality
 - Drawing Chiral Shapes
 - Enantiomer Specific Receptor Sites

- Chirality in carbohydrates
 - Fischer Projections
 - Showing many chiral carbons
 - Classifying Carbohydrates (D/L)
 - Chiral center farthest from the carbonyl group
 - Properties and Uses
 - D-Glucose, D-Galactose, D-Fructose

Ο

Carbohydrates

- We went from...
 - stone knives and clubs
 - logs burn, sticks provide structure
 - alkanes, alkenes, alkynes...
 - bronze spear heads and steel plows
 - functionalized substances
 - alcohols, thiols, ketones...
 - machines with pulleys and gears
 - complex/interconnected functionality
 - carboxylic acids, amides, esters...
- Now we want to talk about bigger molecules, even more involved and ambitious systems
- We'll start with carbohydrates.

Carbohydrates

- We'll start with carbohydrates.
- Carbohydrates are
 - a major source of energy from our diet
 - made from the elements carbon, hydrogen, and oxygen
 - also called saccharides, which means "sugars"

Carbohydrates

- We'll start with carbohydrates.
- Carbohydrates are
 - a major source of energy from our diet
 - made from the elements carbon, hydrogen, and oxygen
 - also called saccharides, which means "sugars"
- Carbohydrates are produced by photosynthesis
 - Sunlight drives the reduction of carbon dioxide and water to form higher energy structures (carbohydrates).
- Carbohydrates are consumed through cellular respiration
 - Animals perform controlled oxidation of carbohydrates to release that chemical energy and power biological processes

Photosynthesis

Water(H_2O)

Chloroplast

Carbon dioxide

Heat

(energy)

CO₂H

OH

ΟН

OH

HO,

HO

ACHN

- Carbohydrates
 - Definition & Examples
 - > Place in the Food Chain
 - Photosynthesis & Respiration
 - Classification
 - Monosaccharides
 - Aldose and Ketose; 3-8 Carbons
- Chirality
 - Molecular Identity
 - Composition (1D), Connectivity (2D)
 - Shape (3D) can contain chirality
 - chiral vs achiral
 - Isomers:
 - Structural isomers
 - Stereo-isomers
 - Chiral Carbons
 - Enantiomeric Molecules
 - Showing Chirality
 - Drawing Chiral Shapes
 - Enantiomer Specific Receptor Sites

- Chirality in carbohydrates
 - Fischer Projections
 - Showing many chiral carbons
 - Classifying Carbohydrates (D/L)
 - Chiral center farthest from the carbonyl group
 - Properties and Uses
 - D-Glucose, D-Galactose, D-Fructose

Ο

- The simplest carbohydrates are monosaccharides.
- Monosaccharides are carbon chains of:
 - three to eight carbons
 - with one carbonyl group
 - and hydroxyl groups attached to each of the other carbons.
- We classify monosaccharides by the location of the carbonyl.
 - Aldose are monosaccharides where the carbonyl group is on the last carbon in the chain (an aldehyde).
 - Ketose are monosaccharides where the carbonyl group is on the second to last carbon in the chain (ketones).

- The simplest carbohydrates are monosaccharides.
- Monosaccharides are carbon chains of:
 - three to eight carbons
 - with one carbonyl group
 - and hydroxyl groups attached to each of the other carbons.
- We further classify monosaccharides by the number of carbons in the chain.
 - Triose are monosaccharides of 3 carbons
 - Tetrose are monosaccharides of 4 carbons
 - Pentose are monosaccharides of 5 carbons
 - Hexose are monosaccharides of 6 carbons
 - Heptose are monosaccharides of 7 carbons
 - Octose are monosaccharides of 8 carbons

Carbon	General	Aldehydes	Ketones
Atoms	terms		
3	Triose	Aldotriose	Keto triose
4	Tetrose	Aldotetrose	Ketotetrose
5	Pentose	Aldopentose	Ketopentose
6	Hexose	Aldohexose	Ketohexose
7	Heptose	Aldoheptose	Ketoheptose

- The simplest carbohydrates are monosaccharides.
- Monosaccharides are carbon chains of:
 - three to eight carbons
 - with one carbonyl group
 - and hydroxyl groups attached to each of the other carbons.
- Examples:
 - An aldopentose is a five-carbon saccharide with an aldehyde group.
 - A ketohexose is a six-carbon saccharide with a ketone group.

Carbon	General	Aldehydes	Ketones
Atoms	terms		
3	Triose	Aldotriose	Keto triose
4	Tetrose	Aldotetrose	Ketotetrose
5	Pentose	Aldopentose	Ketopentose
6	Hexose	Aldohexose	Ketohexose
7	Heptose	Aldoheptose	Ketoheptose

Classify each monosaccharide below:

COOH

R

- Carbohydrates
 - Definition & Examples
 - > Place in the Food Chain
 - Photosynthesis & Respiration
 - Classification
 - Monosaccharides
 - Aldose and Ketose; 3-8 Carbons

Chirality

- Molecular Identity
 - Composition (1D), Connectivity (2D)
 - Shape (3D) can contain chirality
 - chiral vs achiral
- Isomers:
 - Structural isomers
 - Stereo-isomers
 - Chiral Carbons
 - Enantiomeric Molecules
- Showing Chirality
 - Drawing Chiral Shapes
 - Enantiomer Specific Receptor Sites

- Chirality in carbohydrates
 - Fischer Projections
 - Showing many chiral carbons
 - Classifying Carbohydrates (D/L)
 - Chiral center farthest from the carbonyl group
 - Properties and Uses

СООН

R

 D-Glucose, D-Galactose, D-Fructose

Ο

С—Н

H-C-OH

H-C-OH

H-C-OH

H-C-OH

CH₂OH

Reminder!

Structural Isomers

- Isomers are substances that have the same molecular formula but other differences.
- Structural isomers have...
 - the same composition (formula)
 - different connectivity (structure)
- Structural isomers <u>are different substances</u>.
 - A chemical change is required to convert between structural isomers – you have to break and make bonds.
 - This is not the same as conformational changes where you just rotate along bonds.
 - Structural isomers may have different properties:
 - Different boiling point.
 - Different density.
 - Different melting point.
 - Structural isomers have the same composition, so they do have some things in common.
 - The same chemical formula.
 - The same molar mass.

Boiling point: -1.0 °C Density: 0.579 g/mL Melting point: -140 °C

C4H10 Molar mass: 58.12 g/mol

СН₃—СН₂—СН₂—СН₃

CH₃ | CH₃-CH-CH₃

Boiling point: -11.7 °C Density: 2.064 g/mL Melting point: -159.6 °C

C₄H₁₀ Molar mass: 58.12 g/mol

Molar mass: 56.11 g/mol

Stereo Isomers

- Isomers are substances that have the same molecular formula but other differences.
- Structural isomers have...
 - the same composition (formula)
 - different connectivity (structure)
- Stereo isomers have...
 - the same composition (formula)
 - the same connectivity (structure)
 - different shape (sketch)
- > Stereo isomers are different substances.
 - This is not the same as conformational changes where you just rotate along bonds.
 - Stereo isomers may have different properties:
 - Different boiling point.
 - Different density.
 - Different chemical reactivity.
 - Structural isomers have the same composition and connectivity so they do have some things in common.
 - The same chemical formula.
 - The same molar mass.
 - The same bond orders.

- Shapes may have the property of chirality.
- Chiral shapes are not superimposable on their mirror image.
- Not all shapes have this property.
- Achiral shapes are superimposable on their mirror image.

Left hand

Right hand

Mirror image of right hand

- Shapes may have the property of chirality.
- Chiral shapes are not superimposable on their mirror image.
- Not all shapes have this property.
- Achiral shapes are superimposable on their mirror image.

Left hand

Right hand

Achiral

- Shapes may have the property of chirality.
- Chiral shapes are not superimposable on their mirror image.
- Not all shapes have this property.
- Achiral shapes are superimposable on their mirror image.

Left hand

Right hand

Mirror image of right hand

Achiral

Chiral

CO₂H

OH

ΟН

OH

HO,

HO

ACHN

- Carbohydrates
 - Definition & Examples
 - > Place in the Food Chain
 - Photosynthesis & Respiration
 - Classification
 - Monosaccharides
 - Aldose and Ketose; 3-8 Carbons
- Chirality
 - Molecular Identity
 - Composition (1D), Connectivity (2D)
 - Shape (3D) can contain chirality
 - chiral vs achiral
 - Isomers:
 - Structural isomers
 - Stereo-isomers
 - Chiral Carbons
 - Enantiomeric Molecules
 - Showing Chirality
 - Drawing Chiral Shapes
 - Enantiomer Specific Receptor Sites

- Chirality in carbohydrates
 - Fischer Projections
 - Showing many chiral carbons
 - Classifying Carbohydrates (D/L)
 - Chiral center farthest from the carbonyl group
 - Properties and Uses
 - D-Glucose, D-Galactose, D-Fructose

Ο

- Molecules may have a chiral shape.
- When molecules have a chiral shape, this chirality can produce stereoisomers.
- Stereo isomers have...
 - the same composition (formula)
 - the same connectivity (structure)
 - different shape (sketch)
- Molecules are chiral when they have
 - at least one or more chiral carbon atoms
 - a carbon atom, bonded to four different groups
 - nonsuperimposable mirror images
- These types of isomers are called enantiomers.

- Molecules may have a chiral shape.
- When molecules have a chiral shape, this chirality can produce stereoisomers.
- Stereo isomers have...
 - the same composition (formula)
 - the same connectivity (structure)
 - different shape (sketch)
- Molecules are chiral when they have
 - at least one or more chiral carbon atoms
 - a carbon atom, bonded to four different groups
 - nonsuperimposable mirror images
- These types of isomers are called enantiomers.

These are the same structures.

- Molecules may have a chiral shape.
- When molecules have a chiral shape, this chirality can produce stereoisomers.
- Stereo isomers have...
 - the same composition (formula)
 - the same connectivity (structure)
 - different shape (sketch)
- Molecules are chiral when they have
 - at least one or more chiral carbon atoms
 - a carbon atom, bonded to four different groups
 - nonsuperimposable mirror images
- These types of isomers are called enantiomers.

Enantiomers

 Indicate whether each pair is a mirror image that cannot be superimposed (enantiomers).

CO₂H

OH

OH

ΟН

HO,

HO

ACHN

- Carbohydrates
 - Definition & Examples
 - > Place in the Food Chain
 - Photosynthesis & Respiration
 - Classification
 - Monosaccharides
 - Aldose and Ketose; 3-8 Carbons
- Chirality
 - Molecular Identity
 - Composition (1D), Connectivity (2D)
 - Shape (3D) can contain chirality
 - chiral vs achiral
 - Isomers:
 - Structural isomers
 - Stereo-isomers
 - Chiral Carbons
 - Enantiomeric Molecules
 - Showing Chirality
 - Drawing Chiral Shapes
 - Enantiomer Specific Receptor Sites

- Chirality in carbohydrates
 - Fischer Projections
 - Showing many chiral carbons
 - Classifying Carbohydrates (D/L)
 - Chiral center farthest from the carbonyl group
 - Properties and Uses
 - D-Glucose, D-Galactose, D-Fructose

Ο

• If there are two different stereoisomers that share a single chemical formula and a single structure, we need to draw a sketch (or model) to distinguish them.

- Carvone has the following structure. It's found in caraway seeds and gives rye bread it's taste.
- Is this molecule chiral?
- Can you identify a chiral carbon in this molecule?

CH₃

CH₃

- Carvone has the following structure. It's found in caraway seeds and gives rye bread it's taste.
- Is this molecule chiral?
- Can you identify a chiral carbon in this molecule?
- Instead of sketching the whole molecule, we can just indicate the stereochemistry at that one carbon.

CH₃

CH₃

- Knowing that stereochemistry is important to knowing that substance.
- One enantiomer of carvone tastes like rye bread, the other tastes like spearmint.
- They are different substances with different physical and chemical properties.

 CH_3

(^{***}"H

 CH_3

- Biologically active molecules are often chiral.
- Are nicotine or adrenaline chiral?
- Can you find the chiral carbon?

nicotine

- Biologically active molecules are often chiral.
- Are nicotine or adrenaline chiral?
- Can you find the chiral carbon?

nicotine

- Biologically active molecules are often chiral.
- Are nicotine or adrenaline chiral?
- Can you find the chiral carbon?

- The biological activity of these molecules often results from how they fit into receptor sites in the body.
- The chirality of the drug must match the chirality of the site it's binding to, to work properly.
- The wrong enantiomer may be inactive, or may have unexpected (even dangerous) activity.

HO

H₂N

Н

CO₂H

OH

ЪОН

OH

HO,

HO

ACHN

- Carbohydrates
 - Definition & Examples
 - > Place in the Food Chain
 - Photosynthesis & Respiration
 - Classification
 - Monosaccharides
 - Aldose and Ketose; 3-8 Carbons
- Chirality
 - Molecular Identity
 - Composition (1D), Connectivity (2D)
 - Shape (3D) can contain chirality
 - chiral vs achiral
 - Isomers:
 - Structural isomers
 - Stereo-isomers
 - Chiral Carbons
 - Enantiomeric Molecules
 - Showing Chirality
 - Drawing Chiral Shapes
 - Enantiomer Specific Receptor Sites

- Chirality in carbohydrates
 - Fischer Projections
 - Showing many chiral carbons

Ο

С—Н

H-C-OH

H-C-OH

H-C-OH

H-C-OH

CH₂OH

- Classifying Carbohydrates (D/L)
 - Chiral center farthest from the carbonyl group
- Properties and Uses
 - D-Glucose, D-Galactose, D-Fructose

Fischer Projections

- Monosaccharides have many chiral carbons.
- Each non-terminal carbon in the backbone that has an alcohol attached to it is chiral.
- That means each carbon we add to the backbone doubles the number of stereo isomers possible for that chemical formula.

Their are many sugars... plus their enantiomers.

Fischer Projections

- Monosaccharides have many chiral carbons.
- We draw them using a standard called a Fisher projection to simplify communicating their chirality.
- A Fischer projection
 - is a two-dimensional representation of a three-dimensional molecule
 - places the most highly oxidized carbon group at the top
 - orients the backbone bending away from the viewer
 - uses vertical lines in place of dashes for bonds that go back
 - uses horizontal lines in place of wedges for bonds that come forward

Fischer Projections

- Monosaccharides have many chiral carbons.
- We draw them using a standard called a Fisher projection to simplify communicating their chirality.
- A Fischer projection
 - is a two-dimensional representation of a three-dimensional molecule
 - places the most highly oxidized carbon group at the top
 - orients the backbone bending away from the viewer
 - uses vertical lines in place of dashes for bonds that go back
 - uses horizontal lines in place of wedges for bonds that come forward

CO₂H

OH

'ОН

OH

HO,

HO

AcHN

- Carbohydrates
 - Definition & Examples
 - > Place in the Food Chain
 - Photosynthesis & Respiration
 - Classification
 - Monosaccharides
 - Aldose and Ketose; 3-8 Carbons
- Chirality
 - Molecular Identity
 - Composition (1D), Connectivity (2D)
 - Shape (3D) can contain chirality
 - chiral vs achiral
 - Isomers:
 - Structural isomers
 - Stereo-isomers
 - Chiral Carbons
 - Enantiomeric Molecules
 - Showing Chirality
 - Drawing Chiral Shapes
 - Enantiomer Specific Receptor Sites

- Chirality in carbohydrates
 - Fischer Projections
 - Showing many chiral carbons
 - Classifying Carbohydrates (D/L)
 - Chiral center farthest from the carbonyl group
 - Properties and Uses
 - D-Glucose, D-Galactose, D-Fructose

Ο

D/L Designations

- Carbohydrate stereoisomers are assigned D or L designations according to the position of the – OH group on the chiral carbon farthest from the carbonyl carbon.
 - The letter L is assigned to the structure with the OH on the left.
 - The letter D is assigned to the structure with the OH on the right.

D/L Designations

- Carbohydrate stereoisomers are assigned D or L designations according to the position of the – OH group on the chiral carbon farthest from the carbonyl carbon.
 - The letter L is assigned to the structure with the OH on the left.
 - The letter D is assigned to the structure with the OH on the right.

D/L Designations

 Below are two different sugars (both aldoses). Identify the following Fischer projections of each as the L or D isomers of each sugar:

CO₂H

OH

OH

ΟН

HO,

HO

ACHN

- Carbohydrates
 - Definition & Examples
 - > Place in the Food Chain
 - Photosynthesis & Respiration
 - Classification
 - Monosaccharides
 - Aldose and Ketose; 3-8 Carbons
- Chirality
 - Molecular Identity
 - Composition (1D), Connectivity (2D)
 - Shape (3D) can contain chirality
 - chiral vs achiral
 - Isomers:
 - Structural isomers
 - Stereo-isomers
 - Chiral Carbons
 - Enantiomeric Molecules
 - Showing Chirality
 - Drawing Chiral Shapes
 - Enantiomer Specific Receptor Sites

- Chirality in carbohydrates
 - Fischer Projections
 - Showing many chiral carbons
 - Classifying Carbohydrates (D/L)
 - Chiral center farthest from the carbonyl group
 - **Properties and Uses**
 - D-Glucose, D-Galactose, D-Fructose

Ο

Most Important Monosaccharides

• The most important monosaccharides are Glucose, Galactose, and Fructose.

Common Monosaccharides

- D-Glucose is
 - found in fruits, corn syrup, and honey
 - an aldohexose with the formula $C_6H_{12}O_6$
 - known as dextrose and blood sugar in the body
 - a building block in sucrose, lactose, maltose, and in polysaccharides such as cellulose and glycogen
- D-Fructose, obtained from sucrose, is
 - ▶ a ketohexose with the formula C₆H₁₂O₆
 - the sweetest of the carbohydrates, twice as sweet as sucrose

Hyperglycemia and Hypoglycemia

- In the body,
 - glucose has a normal blood level of 70-90 mg/dL
 - a glucose tolerance test measures blood glucose for several hours after ingesting glucose

Hyperglycemia and Hypoglycemia

- In the body,
 - glucose has a normal blood level of 70-90 mg/dL
 - a glucose tolerance test measures blood glucose for several hours after ingesting glucose
- Diabetes mellitus can cause hyperglycemia, which
 - occurs when the pancreas is unable to produce sufficient quantities of insulin
 - allows glucose levels in the body fluids to rise as high as 350 mg/dL of plasma
- Symptoms of diabetes include
 - thirst and excessive urination
 - increased appetite and weight loss
- In older adults, diabetes is sometimes a consequence of excessive weight gain.

Hyperglycemia and Hypoglycemia

- In the body,
 - glucose has a normal blood level of 70-90 mg/dL
 - a glucose tolerance test measures blood glucose for several hours after ingesting glucose
- When a person is hypoglycemic,
 - the blood glucose level rises and then decreases rapidly to levels as low as 40 mg/dL
 - low blood sugar may occur as a result of an overproduction of insulin by the pancreas
 - symptoms may appear, such as dizziness, general weakness, and muscle tremors
 - a diet may be prescribed that consists of several small meals high in protein and low in carbohydrates

CO₂H

OH

ΟН

OH

HO,

HO

ACHN

- Carbohydrates
 - Definition & Examples
 - Place in the Food Chain
 - Photosynthesis & Respiration
 - Classification
 - Monosaccharides
 - Aldose and Ketose; 3-8 Carbons
- Chirality
 - Molecular Identity
 - Composition (1D), Connectivity (2D)
 - Shape (3D) can contain chirality
 - chiral vs achiral
 - Isomers:
 - Structural isomers
 - Stereo-isomers
 - Chiral Carbons
 - Enantiomeric Molecules
 - Showing Chirality
 - Drawing Chiral Shapes
 - Enantiomer Specific Receptor Sites

- Chirality in carbohydrates
 - Fischer Projections
 - Showing many chiral carbons
 - Classifying Carbohydrates (D/L)
 - Chiral center farthest from the carbonyl group
 - Properties and Uses
 - D-Glucose, D-Galactose, D-Fructose

Questions?

