

Combining the hydroxyl and carbonyl functional groups. To make more powerful functional groups.

version 1.0

© Nick DeMello, PhD. 2007-2015

Carboxylic Acids & Esters

Ch14

- Carboxyl Group
 - Compound Functional Groups
- Properties & Structure
 - IM Forces
 - Acid-Base
- Naming
 - Carboxylic Acids
 - Carboxylic Acid Salts

- Adding/Changing Properties
- Naming Substances w/ multiple functional groups
- Willow Bark
- Esters
 - Structure & Properties
 - Naming
- Reactions
 - Esterification
 - Hydrolysis
 - Saponification

Carboxylic Acids

- Carboxylic Acids have many interesting properties.
 - Many of the sharp flavors we enjoy in food (vinegar, grapefruit, lemon...) are produced by simple substances of the carboxylic acid family of organic substances.
 - These organic molecules are acids. Like the simple binary acids you're already familiar with (HCl, HBr) they release free protons (H⁺).
 - These substances have high acidity (low pH).
 - They neutralize bases like NaOH to form water.
 - Many toxins are simple carboxylic acids, like the formic acid in ant venom.
 - Salts formed from carboxylic acids cause food to be resistant to mold and microorganisms that cause spoilage.
 - They play important roles in how animals store and process energy.

Carboxyl Functional Group

- Carboxylic Acids are defined by the carboxyl functional group.
 - The carboxyl group is a composite of two functional groups you're already familiar with.
 - The hydroxyl group.
 - The carbonyl group.

Carbonyl group

Carboxyl group

$$CH_3 - CH_2 - C - OH$$

Carboxyl Functional Group

- Carboxylic Acids are defined by the carboxyl functional group.
 - The carboxyl group is a composite of two functional groups you're already familiar with.
 - The hydroxyl group.
 - The carbonyl group.
 - Both of those groups are polar.
 - Carboxylic acids are strongly polar because they have two polar groups.

Ch14

Carboxylic Acids & Esters

- Carboxylic Acids
 - Carboxyl Group
 - Compound Functional Groups
 - Properties & Structure
 - IM Forces
 - Acid-Base
 - Naming
 - Carboxylic Acids
 - Carboxylic Acid Salts

- Adding/Changing Properties
- Naming Substances w/ multiple functional groups
- Willow Bark
- Esters
 - Structure & Properties
 - Naming
- Reactions
 - Esterification
 - Hydrolysis
 - Saponification

Carboxyl Functional Group

- Carboxylic Acids are defined by the carboxyl functional group.
 - The carboxyl group is a composite of two functional groups you're already familiar with.
 - The hydroxyl group.
 - The carbonyl group.
 - Both of those groups are polar.
 - Carboxylic acids are strongly polar because they have two polar groups.
 - Each carboxylic acids forms hydrogen bonds with many water molecules at once.
 - Carboxylic acids with up to four carbon atoms are very soluble in water
 - As the number of carbons increases, the solubility of the carboxylic acid in water is reduced.

Properties & Structure

- Carboxylic Acids are defined by the carboxyl functional group.
 - The carboxyl group is a composite of two functional groups you're already familiar with.
 - The hydroxyl group.
 - The carbonyl group.
 - Both of those groups are polar.
 - Carboxylic acids are strongly polar because they have two polar groups.
 - Each carboxylic acids forms hydrogen bonds with many water molecules at once.
 - Carboxylic acids with up to four carbon atoms are very soluble in water
 - As the number of carbons increases, the solubility of the carboxylic acid in water is reduced.

- Carboxylic Acids experience all three kinds of intermolecular forces:
 - Van der Waals Forces
 - Dipole-Dipole Forces
 - Hydrogen Bonding
 - Because carboxylic acids have both a hydroxyl and carbonyl group they form more hydrogen bonds than alcohols.
 - Carboxylic Acids have higher boiling points and melting points than even alcohols.

Ch14

Carboxylic Acids & Esters

- Carboxylic Acids
 - Carboxyl Group
 - Compound Functional Groups
 - Properties & Structure
 - IM Forces
 - Acid-Base
 - Naming
 - Carboxylic Acids
 - Carboxylic Acid Salts

- Adding/Changing Properties
- Naming Substances w/ multiple functional groups
- Willow Bark
- Esters
 - Structure & Properties
 - Naming
- Reactions
 - Esterification
 - Hydrolysis
 - Saponification

Properties & Structure

- Carboxylic Acids are defined by the carboxyl functional group.
 - Carboxylic acids are strongly polar because they have two polar groups.
 - The two polar groups cooperate to balance negative charge, stabilizing the molecule enough to allow it to release protons.
 - To act as an organic acid.

Properties & Structure

- Carboxylic Acids are defined by the carboxyl functional group.
 - Carboxylic acids are strongly polar because they have two polar groups.
 - The two polar groups cooperate to balance negative charge, stabilizing the molecule enough to allow it to release protons.
 - To act as an organic acid.

	Functional group	o Example H₂C ∕∕ ^{CH} 3	рКа ~50	Conjugate Base H₃C ∕∕ CH₂ [⊝]
	Alkene	H H	~43	© ∕
	Ketone/ aldehyde	о Н₃С [⊥] СН₃	20-24	H₃C CH₂ ⊖
	Alcohol	н₃с́ ^{ОН}	17	н₃с ^{_0⊝}
	Water	HO- <mark>H</mark>	16	но⊖
	Thiols	CH₃S– <mark>H</mark>	13	ch₃s [⊖]
\rightarrow	Carboxylic acids	н₃с́он	4	ызс о́
	Sulfuric acid	H ₂ SO ₄	-3	HSO₄ [⊖]
	Hydrochloric acid	HCI	-6	cı [⊖]

Ch14

Carboxylic Acids & Esters

- Carboxylic Acids
 - Carboxyl Group
 - Compound Functional Groups
 - Properties & Structure
 - IM Forces
 - Acid-Base
 - Naming
 - Carboxylic Acids
 - Carboxylic Acid Salts

- Adding/Changing Properties
- Naming Substances w/ multiple functional groups
- Willow Bark
- Esters
 - Structure & Properties
 - Naming
- Reactions
 - Esterification
 - Hydrolysis
 - Saponification

Naming Carboxylic Acids

- The simplest carboxylic acids are formic acid and acetic acid.
- Carboxylic acids are named with IUPAC using the family suffix -oic acid.

Naming Carboxylic Acids

- The simplest carboxylic acids are formic acid and acetic acid.
- Carboxylic acids are named with IUPAC using the family suffix -oic acid.

Carboxylate Ions

 δ^{-}

- Carboxylic Acids are defined by the carboxyl functional group.
 - Carboxylic acids are strongly polar because they have two polar groups.
 - The two polar groups cooperate to balance negative charge, stabilizing the molecule enough to allow it to release protons.
 - To act as an organic acid.

Carboxylate Ions

- The ions formed from carboxylic acids are named the same way.
- We use the family suffix -oate ion to name the carboxylate ion formed.

 H_3O^+

3-Methylpentanoic acid

3-Methylpentanoate ion

`O_

Carboxylate Ions

- The ions formed from carboxylic acids are named the same way.
- We use the family suffix -oate ion to name the carboxylate ion formed.
- You already know how to name the salts formed from ions (organic or otherwise).
- Just combine the name of the two ions.

Examples

Potassium trans-2,3-Dichloro-4-hexenoate

Lithium 4-Bromo-3-butynoate

Examples

Carboxylic acid salts are used as preservatives and flavor enhancers such as... Na⁺ * sodium propanoate, which is used in cheese and breads * sodium benzoate, which inhibits growth of mold and bacteria and is added to fruit juices, margarine, Na⁺ relishes, salads, and jams * monosodium glutamate, MSG, which is added to meats, fish, vegetables, and baked goods to enhance flavor OH WT 32 07 (2) Na⁺ $\overline{N}H_2$

Ch14

Carboxylic Acids & Esters

- Carboxylic Acids
 - Carboxyl Group
 - Compound Functional Groups
 - Properties & Structure
 - IM Forces
 - Acid-Base
 - Naming
 - Carboxylic Acids
 - Carboxylic Acid Salts

- Adding/Changing Properties
- Naming Substances w/ multiple functional groups
- Willow Bark
- Esters
 - Structure & Properties
 - Naming
- Reactions
 - Esterification
 - Hydrolysis
 - Saponification

- As structures get larger, they will start containing more than one functional group.
 - Carboxylic acids contain both carbonyl and hydroxyl groups.
 - When they're connected we often describe the combination as a new functional group, the carboxyl group in this case.
- The functional groups will interact, creating new dynamics within the molecule and therefore new properties.
 - > The hydroxyl group behaves *differently* in the alcohol, phenol, and carboxylic families.

- As structures get larger, they will start containing more than one functional group.
 - Carboxylic acids contain both carbonyl and hydroxyl groups.
 - When they're connected we often describe the combination as a new functional group, the carboxyl group in this case.
- The functional groups will interact, creating new dynamics within the molecule and therefore new properties.
 - The hydroxyl group behaves differently in the alcohol, phenol, and carboxylic families.

- As structures get larger, they will start containing more than one functional group.
 - Carboxylic acids contain both carbonyl and hydroxyl groups.
 - When they're connected we often describe the combination as a new functional group, the carboxyl group in this case.
- The functional groups will interact, creating new dynamics within the molecule and therefore new properties.
 - The hydroxyl group behaves differently in the alcohol, phenol, and carboxylic families.

Alcohol Family

pKa = 14-16 (not acidic)

- Somewhat soluble in water.

- High pH (not acidic)

Alcohol Family

Carboxylic Acid Family

- The functional groups will interact, creating new dynamics within the molecule and therefore new properties.
 - The hydroxyl group behaves differently in the alcohol, phenol, and carboxylic families.
 - Structural features, like unsaturations, can change it's behavior and therefore the properties of the substance.

More soluble in water.Moderate pH.

- The functional groups will interact, creating new dynamics within the molecule and therefore new properties.
 - The hydroxyl group behaves differently in the alcohol, phenol, and carboxylic families.
 - Structural features, like unsaturations, can change it's behavior and therefore the properties of the substance.
 - Other functional groups, like carbonyls, can also interact and change behavior and properties.

 H^+

Very soluble in water.
High pH.

 H^+

- The functional groups will interact, creating new dynamics within the molecule and therefore new properties.
 - The hydroxyl group behaves differently in the alcohol, phenol, and carboxylic families.
 - Structural features, like unsaturations, can change it's behavior and therefore the properties of the substance.
 - Other functional groups, like carbonyls, can also interact and change behavior and properties.

Ch14

Carboxylic Acids & Esters

- Carboxylic Acids
 - Carboxyl Group
 - Compound Functional Groups
 - Properties & Structure
 - IM Forces
 - Acid-Base
 - Naming
 - Carboxylic Acids
 - Carboxylic Acid Salts

- Adding/Changing Properties
- Naming Substances w/ multiple functional groups
 - Willow Bark
- Esters
 - Structure & Properties
 - Naming
- Reactions
 - Esterification
 - Hydrolysis
 - Saponification

- As structures get larger, they will start containing more than one functional group.
 - Carboxylic acids contain both carbonyl and hydroxyl groups.
 - When they're connected we often describe the combination as a new functional group, the carboxyl group in this case.
- When the functional groups are not connected, we need a way to assign a family and address the functional groups that don't define that family.
- For simple mixed functional group compounds, we assign them to the family of the most oxidized functional group in the mole
 - Aldehydes trump ketones (they can be further oxidized, ketones can't)

How do we assign addresses to the other functional groups?

Name it as a ketone.

Name it as an aldehyde.

Name it as a carboxylic acid.

- For simple mixed functional group compounds, we assign them to the family of the most oxidized functional group in the molecule.
 - Aldehydes trump ketones (they can be further oxidized, ketones can't)
- The other functional groups get demoted to substituents and addressed with the same system we've been using all along.

	Fun	ctiona	Prefix (used as substituent)			
	-OH	Hydroxyl Group		hydroxy-		
	-SH	Thiol Group		sulfanyl-		
	-CO-	Carbonyl Group			OXO-	
ſ	Family		Suffix (for family)		Functional Group	
	Alcohols		-ol		-OH	
	Phenols		-phenol		-OH	
	Thiols		-thiol		—SH	
	Ketones		-one		-CO-	
Aldehydes		-al		-CO-		

Name it as a ketone.

Name it as an aldehyde.

OH O

Name it as a carboxylic acid.

Examples

3-Hydroxy-4-oxopentanal

OH

ÔН Ο

3-Hydroxy-4-oxopentanoic acid

Ch14

Carboxylic Acids & Esters

- Carboxylic Acids
 - Carboxyl Group
 - Compound Functional Groups
 - Properties & Structure
 - IM Forces
 - Acid-Base
 - Naming
 - Carboxylic Acids
 - Carboxylic Acid Salts

- Adding/Changing Properties
- Naming Substances w/ multiple functional groups
- Willow Bark
- Esters
 - Structure & Properties
 - Naming
- Reactions
 - Esterification
 - Hydrolysis
 - Saponification

salicylic acid

- By the 1800s, chemists discovered that salicin from the willow tree bark and leaves was responsible for pain relief, fever reduction and reduced inflammation.
- The body converts salicin to salicylic acid by reducing the ether and then oxidizing the primary alcohol to a carboxylic acid.
- Salicylic acid is the substance that has analgesic, anti-inflammatory, and antipyretic properties.

salicylic acid

- Salicylic acid is the substance that has analgesic, anti-inflammatory, and antipyretic properties.
- Salicylic acid is very acidic and can cause upset stomachs, that side effect makes it difficult to use in many cases.
- Phenols and carboxylic acids are acidic, but other substances with these functional groups don't have the same side effect.

salicylic acid

- Salicylic acid is the substance that has analgesic, anti-inflammatory, and antipyretic properties.
- Salicylic acid is very acidic and can cause upset stomachs, that side effect makes it difficult to use in many cases.
- Phenols and carboxylic acids are acidic, but other substances with these functional groups don't have the same side effect.
- In salicylic acid, the functional groups interact to create that greater acidity.

- Chemists tried to improve on salicylic acid to reduce that side effect while retaining it's other useful properties.
- The first thing they tried was replacing the hydrogen in the carboxylic acid with a methyl group.
- Carboxylic Acids and alcohols can react in acid and water to combine. This is a reversible reaction.
- This is a condensation or esterification reaction.

Oil of Wintergreen

methyl salicylate

- Methyl salicylate (oil of wintergreen) retained many of the properties of salicylic acid.
 - It's still an analgesic (pain reliever).
- It lost other properties.
 - Without the carboxylic acid group it is less acidic.
 - It's also less water soluble, more greasy.
 - It's not easily consumed.
- It has other properties all it's own.
 - In small quantities it's used as food flavoring, it's responsible for the mint taste in spearmint gum.
 - It can be absorbed through the skin. It's the active ingredient in Tiger Balm, Icy Hot, and Bengay ointments.
 - It has a high toxicity. One spoonful is three times a lethal dose.
 - In 2007 a professional runner died from using too much Bengay.

- The next thing they tried was replacing the hydrogen in the phenol with an acetal group.
- Carboxylic Acids and alcohols can react in acid and water to combine. This is a reversible reaction.
- They used the same esterification reaction to disrupt the phenols contribution to salicylic acids high acidity.

Aspirin

- Acetylsalicylic acid (aspirin) retained many of the properties of salicylic acid.
 - It's still an analgesic (pain reliever)
 - It's also an antipyretic (fever reducer)
 - It's an anti-inflammatory agent
- It lost other properties.
 - It doesn't have the same disruptive effect on the stomach.
- Bayer chemicals introduced aspirin as a product in 1897 and has been selling it ever since.

Ch14

Carboxylic Acids & Esters

- Carboxylic Acids
 - Carboxyl Group
 - Compound Functional Groups
 - Properties & Structure
 - IM Forces
 - Acid-Base
 - Naming
 - Carboxylic Acids
 - Carboxylic Acid Salts

- Adding/Changing Properties
- Naming Substances w/ multiple functional groups
- Willow Bark

- Structure & Properties
- Naming
- Reactions
 - Esterification
 - Hydrolysis
 - Saponification

- Both oil of wintergreen and aspirin are examples of another family of organic compounds.
- Esters are substances derived from an acid (organic or inorganic) in which at least one -OH (hydroxyl) group is replaced by an -O-alkyl or -O-aryl group.
- Usually, esters are derived from a carboxylic acid and an alcohol.
- Esters comprise most naturally occurring fats and oils.

- Many of the fragrances of perfumes and flowers and the flavors of fruits are due to esters.
- Simple esters are volatile, so we can smell them, and they are soluble in water, so we can taste them.
 - Being a hydrogen bond accepter esters are reasonably water soluble.
 - Having no hydroxy group, they cannot be a hydrogen bond donator, so they have a lower boiling point (more volatile).

- Esters are used in many ways.
 - Fragrant esters are used in perfumes, essential oils, food flavorings, and cosmetics.
 - Natural esters are found in pheromones
 - Nitrated esters, such as nitroglycerin, are known for their explosive properties.
 - Polymers formed from esters are called polyesters are used to make plastics and synthetic cloth.
 - Esters are used to make surfactants (soaps, detergents, cleansers...)

n

Ch14

Carboxylic Acids & Esters

- Carboxylic Acids
 - Carboxyl Group
 - Compound Functional Groups
 - Properties & Structure
 - IM Forces
 - Acid-Base
 - Naming
 - Carboxylic Acids
 - Carboxylic Acid Salts

- Adding/Changing Properties
- Naming Substances w/ multiple functional groups
- Willow Bark
- Esters
 - Structure & Properties
 - Naming
- Reactions
 - Esterification
 - Hydrolysis
 - Saponification

- Simple esters are named with the family suffix -oate.
- The name has two parts.
 - Start with the underlying carboxylic acid and replace the -oic acid with -oate. That's the second part.
 - In front of that put the substituent bonded to the oxygen, as if it were a chain branch.

- Simple esters are named with the family suffix -oate.
- The name has two parts.
 - Start with the underlying carboxylic acid and replace the -oic acid with -oate. That's the second part.
 - In front of that put the substituent bonded to the oxygen, as if it were a chain branch.

Cyclohexyl 3-chloropentanoate

cis-2-Butenyl trans-3-pentenoate

Ch14

Carboxylic Acids & Esters

- Carboxylic Acids
 - Carboxyl Group
 - Compound Functional Groups
 - Properties & Structure
 - IM Forces
 - Acid-Base
 - Naming
 - Carboxylic Acids
 - Carboxylic Acid Salts

- Adding/Changing Properties
- Naming Substances w/ multiple functional groups
- Willow Bark
- Esters
 - Structure & Properties
 - Naming

- Esterification
- Hydrolysis
- Saponification

Reactions of Esters

- Esters are formed by condensing an alcohol and a carboyxlic acid.
- The reaction is also called an esterification of a carboxylic acid.
- It's an equilibrium reaction, but driven forward by using a large excess of the alcohol.

Reactions of Esters

- Hydrolysis of esters is breaking them into alcohols and carboxylic acids.
- It can be accomplished with acid and heat.
 - It's an equilibrium reaction, but driven forward by using a large excess water.
 - It's the reserve of esterification.

Reactions of Esters

- Hydrolysis of esters is breaking them into alcohols and carboxylic acids.
- Hydrolysis can also be accomplished with strong base.
- This type of hydrolysis is called saponification (soap making).
- It produces carboxylic acid salts instead of acids.

Reaction Summary

• Esterification:

Ch14

Carboxylic Acids & Esters

- Carboxylic Acids
 - Carboxyl Group
 - Compound Functional Groups
 - Properties & Structure
 - IM Forces
 - Acid-Base
 - Naming
 - Carboxylic Acids
 - Carboxylic Acid Salts

- Adding/Changing Properties
- Naming Substances w/ multiple functional groups
- Willow Bark
- Esters
 - Structure & Properties
 - Naming
- Reactions
 - Esterification
 - Hydrolysis
 - Saponification

Questions?

