

Amino Acids and proteins we make from them. A whole new scale of biomolecule.

version 1.0

© Nick DeMello, PhD. 2007-2015

Ch16 **Amino Acids** Talking about Proteins Acid-Base Reactions A whole new scale pl of Amino Acids • Below the pl Protein Function • Above the pl H Amino Acids R H_2O Structure α Carbon \oplus NH₃ NH₃ NH_2 Zwitterion $\stackrel{\mathsf{pK}_2}{\longrightarrow} R - \stackrel{|}{C} - \stackrel{|}{COO}^{\ominus}$ $R - \frac{1}{C} - \frac{1}{COO}^{\ominus}$ R - C - COOH 20 Primary Amino Acids Н Η Η Polar and Nonpolar Acidic and Basic Drawing Amino Acids D/L Stereoisomers Sources Beans Methionine and other Valine leaumes Essential Amino Acids Threonine Phenylalanine Leucine Corn (maize)

Isoleucine

Tryptophan

Lysine

and other grains

2

HO

 NH_2

Proteins

Class of Protein	Function	Examples
Structural	Provide structural components	<i>Collagen</i> is in tendons and cartilage. <i>Keratin</i> is in hair, skin, wool, and nails.
Contractile	Make muscles move	Myosin and actin contract muscle fibers.
Transport	Carry essential substances throughout the body	<i>Hemoglobin</i> transports oxygen. <i>Lipoproteins</i> transport lipids.
Storage	Store nutrients	<i>Casein</i> stores protein in milk. <i>Ferritin</i> stores iron in the spleen and liver.
Hormone	Regulate body metabolism and the nervous system	<i>Insulin</i> regulates blood glucose level. <i>Growth hormone</i> regulates body growth.
Enzyme	Catalyze biochemical reactions in the cells	<i>Sucrase</i> catalyzes the hydrolysis of sucrose. <i>Trypsin</i> catalyzes the hydrolysis of proteins.
Protection	Recognize and destroy foreign substances	<i>Immunoglobulins</i> stimulate immune responses.

- Proteins do a lot of things, they...
 - Provide structure. Components such as muscle, bone, skin, hair, nails and even the horns of animals are made of protein...
 - Function as enzymes to control chemical reactions such as digestion and cellular metabolism.
 - Act as mechanisms, like how hemoglobin and myoglobin transport oxygen in the blood or how muscle fibers contract to move your arm.

Proteins

- Protein molecules, compared with many of the compounds we have studied, can be ... much bigger.
- You're familiar with molecules like:
 - Carbon Dioxide (3 atoms; mm 44 g/mol)
 - Glucose (24 atoms; mm 180 g/mol)
- These are examples of protein molecules:
 - Insulin (483 atoms; mm 5,800 g/mol)
 - Hemoglobin (5,000 atoms; mm 67,000 g/mol)
- Proteins are polymers.
- Proteins are made from amino acids, linked together.

Ch16

Amino Acids

- Talking about Proteins
 - A whole new scale
 - Protein Function

Amino Acids

- Structure
 - α Carbon
 - Zwitterion
- 20 Primary Amino Acids
 - Polar and Nonpolar
 - Acidic and Basic
- Drawing Amino Acids
- D/L Stereoisomers
- Sources
 - Essential Amino Acids

Acid-Base Reactions

- pl of Amino Acids
 - Below the pl
 - Above the pl

- Proteins are built from amino acids.
- Amino acids are a carbon backbone with an amine and a carboxylic acid.
- There are a lot of amino acids.
- The human body builds proteins from twenty, that all have the amine in the same position.
- They're named after that common feature:
 - \blacktriangleright 2-amino acids or α -amino acids
- The twenty α-amino acids we make proteins from are called the primary amino acids.
- They differ by the residue R.

- α-Amino acids have a melting point in the 200-300° C range.
 - This is really high for organic compounds of this size.
 - The reason for this is α-amino acids have an acid and base in the same molecule, right next to each other.
- Amino acids commonly form a zwitterion.
- A zwitterion is a neutral molecule with both a positive and a negative electrical charge.
- Zwitterions are sometimes also called inner salts.

HO

- α-Amino acids have a melting point in the 200-300° C range.
 - This is really high for organic compounds of this size.
 - The reason for this is α-amino acids have an acid and base in the same molecule, right next to each other.
- Amino acids commonly form a zwitterion.
- A zwitterion is a neutral molecule with both a positive and a negative electrical charge.
- Zwitterions are sometimes also called inner salts.

- In biological systems, amino acids are written as the zwitterion.
 - the central atom is the α -carbon bonded to:
 - ▶ an ammonium group (−NH₃⁺)
 - ▶ a carboxylate group (-COO¹⁻)
 - a hydrogen atom
 - and a R group or side chain
- Differences in the R group produce the different α-amino acids.

Try it.

Serine is the primary amino acid whose residue (R) is a methoxy group (-CH₂OH).
Draw the unionized structure of this amino acid.

Draw the zwitterion structure of SER (serine).

Ch16

Amino Acids

- Talking about Proteins
 - A whole new scale
 - Protein Function
- Amino Acids
 - Structure
 - α Carbon
 - Zwitterion
 - 20 Primary Amino Acids
 - Polar and Nonpolar
 - Acidic and Basic
 - Drawing Amino Acids
 - D/L Stereoisomers
 - Sources
 - Essential Amino Acids

- Acid-Base Reactions
 - pl of Amino Acids
 - Below the pl
 - Above the pl

Twenty Primary Amino Acids

- There are more than 20 α-amino acids that the human body uses (some are consumed to produce energy).
- 20 are used to build proteins.
- These twenty primary amino acids have both a 3 letter and 1 letter designation.
- You need to be able to convert between the names, 3 letter codes and 1 letter codes for these amino acids.

No.	Amino acid	3-Letter code	1-Letter code
1	Alanine	Ala	А
2	Arginine	Arg	R
3	Asparagine	Asn	N
4	Aspartic acid	Asp	D
5	Cysteine	Cys	С
6	Glutamine	Gln	Q
7	Glutamic acid	Glu	E
8	Glycine	Gly	G
9	Histidine	His	Н
10	Isoleucine	Ile	Ι
11	Leucine	Leu	L
12	Lysine	Lys	K
13	Methionine	Met	Μ
14	Phenylalanine	Phe	F
15	Proline	Pro	P
16	Serine	Ser	S
17	Threonine	Thr	Т
18	Tryptophan	Ттр	W
19	Tyrosine	Tyr	Y
20	Valine	Val	V

Twenty Primary Amino Acids

- The structural differences in the "R" group of primary amino acids will determine the properties of proteins formed from them.
- Amino acids are classified into different categories to help recognize common functionality they provide.

- Four primary categories are:
 - Amino acids with polar "R" groups.
 - Amino acids with non-polar "R" groups.
 - Amino acids with acidic "R" groups.
 - Amino acids with basic "R" groups.

No.	Amino acid	3-Letter code	1-Letter code
1	Alanine	Ala	А
2	Arginine	Arg	R
3	Asparagine	Asn	N
4	Aspartic acid	Asp	D
5	Cysteine	Cys	С
6	Glutamine	Gln	Q
7	Glutamic acid	Glu	E
8	Glycine	Gly	G
9	Histidine	His	Н
10	Isoleucine	Ile	Ι
11	Leucine	Leu	L
12	Lysine	Lys	K
13	Methionine	Met	Μ
14	Phenylalanine	Phe	F
15	Proline	Pro	Р
16	Serine	Ser	S
17	Threonine	Thr	Т
18	Tryptophan	Ттр	W
19	Tyrosine	Tyr	Y
20	Valine	Val	V

Alanine	
Arginine	
Asparagine	
Aspartic	
Cysteine	

No.	Amino acid	3-Letter code	1-Letter code
1	Alanine	Ala	А
2	Arginine	Arg	R
3	Asparagine	Asn	Ν
4	Aspartic acid	Asp	D
5	Cysteine	Cys	С
6	Glutamine	Gln	Q
7	Glutamic acid	Glu	Е
8	Glycine	Gly	G
9	Histidine	His	Н
10	Isoleucine	Ile	Ι
11	Leucine	Leu	L
12	Lysine	Lys	K
13	Methionine	Met	Μ
14	Phenylalanine	Phe	F
15	Proline	Pro	Р
16	Serine	Ser	S
17	Threonine	Thr	Т
18	Tryptophan	Trp	W
19	Tyrosine	Tyr	Υ
20	Valine	Val	V

Amino Acids

- Amino acids are classified as
 - nonpolar (hydrophobic) with hydrocarbon side chains
 - polar (hydrophilic) with polar or ionic side chains

valine is classified as non-polar because it's side chain is non-polar (an isopropyl group)

Nonpolar Amino Acids

- An amino acid is nonpolar when the R group is H, alkyl, or aromatic.
 - Nine of the primary amino acids are CH₃ CH₃ CH₃ considered non-polar. CH₃ CH CH_2 CH₃ CH₂ CH3-CH CH₃ CH H $H_{3}N - C - COO^{-1}$ H₃N⁺ H₃N⁺-C⁺-H₃N-H₃N-C-COO C-COO--COO CO0⁻ H H H H H Glycine (Gly, G) Alanine (Ala, A) Valine (Val, V) Leucine (Leu, L) Isoleucine (Ile, I) 6.0 6.0 6.0 6.0 6.0 CH₃ S CH₂ CH₂ CH₂ H_2C CH₂ CH₂ CH₂ H₃N -H₃N--COO-H₃N-C-C00-C00--C-C-COO H₂N C-Ĥ H H H Phenylalanine (Phe, F) Proline (Pro, P) Tryptophan (Trp, W) Methionine (Met, M) 5.5 5.7 6.3 5.9

Nonpolar Amino Acids

CYCLIC

Phenylalanine(PHE) (F) Tryptophan(TRP) (W) Proline(PRO) (P)

Polar Amino Acids

• An amino acid is polar when the R group is an alcohol, a thiol, or an amide.

Polar Neutral Amino Acids

Try it.

• For each amino acid shown below, determine if it's a polar or non-polar amino acid.

Acidic Amino Acids

• An amino acid is acidic when the R group is a carboxylic acid.

Amino Acids with Charged R Groups Acidic (negative charge)

Basic Amino Acids

• An amino acid is basic when the R group is an amine.

H₂N

ŇΗ

Arginine (ARG) (R)

H₂N-

CO₂H

Twenty Primary Amino Acids

you do not need to memorize the structure of each amino acid.

Neutral, nonpolar

Neutral, polar

H₃N 0 Glutamic acid (Glu) (E)

-000

Cysteine

(Cys) (C)

Ch16

Amino Acids

- Talking about Proteins
 - A whole new scale
 - Protein Function
- Amino Acids
 - Structure
 - α Carbon
 - Zwitterion
 - > 20 Primary Amino Acids
 - Polar and Nonpolar
 - Acidic and Basic
 - Drawing Amino Acids
 - D/L Stereoisomers
 - Sources
 - Essential Amino Acids

- Acid-Base Reactions
 - pl of Amino Acids
 - Below the pl
 - Above the pl

Stereoisomers

- All the α-amino acids except for glycine are chiral.
- The α -carbon is attached to four different atoms.
- If we draw the amino acid as a fisher projection:
 - The --NH₃⁺ group appears on the right in D enantiomer.
 - The --NH₃⁺ group appears on the left in L enantiomer.

Try it.

Identify the following amino acids as D or L enantiomers:

L-Phenylalanine

Try it.

• Identify the following amino acids as D or L enantiomers:

L-Isoleucine

Ch16

Amino Acids

- Talking about Proteins
 - A whole new scale
 - Protein Function
- Amino Acids
 - Structure
 - α Carbon
 - Zwitterion
 - > 20 Primary Amino Acids
 - Polar and Nonpolar
 - Acidic and Basic
 - Drawing Amino Acids
 - D/L Stereoisomers

Sources

Essential Amino Acids

- Acid-Base Reactions
 - pl of Amino Acids
 - Below the pl
 - Above the pl

Sources of Amino Acids

- Of the 20 amino acids used to build the proteins in the body,
 - only 11 can be synthesized in the body
 - the other 9 amino acids are essential amino acids that must be obtained from the proteins in the diet

Sources of Amino Acids

- Complete proteins such as eggs, milk, meat, and fish contain all of the essential amino acids.
- Incomplete proteins from plants such as grains, beans, and nuts are deficient in one or more essential amino acids.

Ch16

Amino Acids

- Talking about Proteins
 - A whole new scale
 - Protein Function
- Amino Acids
 - Structure
 - α Carbon
 - Zwitterion
 - 20 Primary Amino Acids
 - Polar and Nonpolar
 - Acidic and Basic
 - Drawing Amino Acids
 - D/L Stereoisomers
 - Sources
 - Essential Amino Acids

Acid-Base Reactions

- pl of Amino Acids
 - Below the pl
 - Above the pl

Isoelectric Point

- When an amino acid with positive and negative charges is overall neutral in charge, it is said to be at its isoelectric point (pl).
- Ball-and-stick model of glycine at its pl of 6.0.

Isoelectric Point

- The isoelectric point of an amino acid is the pH at which
 - the charged groups on an amino acid are balanced
 - the amino acid is neutral
- An amino acid can exist as
 - a positive ion if a solution is more acidic (lower pH) than its pl
 - as a negative ion if a solution is more basic (higher pH) than its pl

- The pl values for nonpolar and
 - and polar neutral amino acids
 - are from pH 5.1 to 6.3.

 Alanine has a zero overall charge at its pl of 6.0 with a carboxylate anion (-COO¹⁻) and an ammonium cation (- NH₃⁺).

 Alanine adds an H+ to the carboxyl group (- COO-) when the solution is more acidic than its pl (pH < 6).

 At a pH higher than 6.0, the - NH3+ group loses H+ and forms an amino group (-NH2) that has no charge.

 Because the - COO- group has a charge of 1-, alanine has an overall negative charge (1-) at a pH higher than 6.0.

Try it.

The un-ionized form of valine is drawn below. Write the zwitterion of valine at it's pl point.

• Write the zwitterion of valine when the pH is above the pI of valine.

• Write the zwitterion of valine when the pH is below the pI of valine.

Ch16

Amino Acids

- Talking about Proteins
 - A whole new scale
 - Protein Function
- Amino Acids
 - Structure
 - α Carbon
 - Zwitterion
 - 20 Primary Amino Acids
 - Polar and Nonpolar
 - Acidic and Basic
 - Drawing Amino Acids
 - D/L Stereoisomers
 - Sources
 - Essential Amino Acids

- Acid-Base Reactions
 - pl of Amino Acids
 - Below the pl
 - Above the pl

Questions?

