

Exploring the molecular blueprint. How we represent compounds & molecules.

version 1.5

© Nick DeMello, PhD. 2007-2015

Molecules & Compounds

- Compounds are not mixtures.
- Chemical Bonding
 - covalent vs ionic bonds
 - molecular vs ionic compounds
- Chemical Formula
 - Symbols in Formulas
 - Kinds of chemical formula
 - Identification, Composition
- Composition
 - Molecular Formulas
 - Molecular Weight
 - Percent Composition
- Elemental Analysis
 - You can calculate the percent composition of elements in a molecule from it's formula.
 - You can compare your results with combustion analysis to confirm the identity of a substance.
 - You can calculate the ratio of elements in a compound from elemental analysis.
 - > This is not the molecular formula!
 - ▶ It's just the ratio. The Empirical Formula
 - You can calculate Molecular Formula form the Empirical formula...
 - Only if you have the molar mass!

Chemical Bonding

- Bringing elements together to form new compounds.
- Not a mixture, but bonding the elements at the atomic level.
- When you mix hydrogen and oxygen, you don't have a new substance – no new properties are observed.
 - Mixtures are useful, but it's not a reaction.
 - It's just stirring up the particles.
- When you react hydrogen and oxygen, you have a new substance – you see new properties.
 - Water is a compound
 - won't burn
 - liquid at room temperature
 - causes sodium to burn
- The compound forms because the atoms bond to each other.
- All chemical bonding uses electrons to glue atoms to each other
- There are different types of bonding.
 - metallic
 - ▸ ionic
 - covalent

Chemical Bonds

Metallic Bonding (no non-metals)

- In pure metals (Fe, Au, Co) or alloys (mixtures of metals) electrons break off and float between the atoms.
- These free flowing electrons make metals extremely good conductors of electricity.
- Metal atoms pull on the electrons flowing between them causing the mass to stick together.
- Metallic bonding does not form compounds.

Ionic Bonding (metal with non-metal)

- When you mix metals and non-metals electrons break off from metals and are captured by non-metals.
- This creates positively and negatively charged particles.
- The particles attract each other, this is an ionic bond.
- Ionic bonds are extremely strong.
- These ions clump together in simple, large complexes.
- Compounds made from ionic bonds are ionic compounds.

Covalent Bonding (only non-metals)

- Nonmetals pull on each others electrons.
- If neither non-metal pulls hard enough to remove the electron from the other, the two end up sharing a pair of electrons.
- The shared electrons are localized between two atoms, creating a bond between just those two atoms.
- This produces discrete microscopic structures built of atoms.
- Particles made of covalent bonds are molecules.
- Compounds made from covalent bonds are molecular compounds.

Chemical Bonding in Compounds

(Net charge – 1)

(Net charge 0)

- Molecules & Compounds
 - Compounds are not mixtures.
 - Chemical Bonding
 - covalent vs ionic bonds
 - molecular vs ionic compounds
 - Chemical Formula
 - Symbols in Formulas
 - Kinds of chemical formula
 - Identification, Composition
- Composition
 - Molecular Formulas
 - Molecular Weight
 - Percent Composition
- Elemental Analysis
 - You can calculate the percent composition of elements in a molecule from it's formula.
 - You can compare your results with combustion analysis to confirm the identity of a substance.
 - You can calculate the ratio of elements in a compound from elemental analysis.
 - > This is not the molecular formula!
 - > It's just the ratio. The Empirical Formula
 - You can calculate Molecular Formula form the Empirical formula...
 - Only if you have the molar mass!

Symbols & Formulas

AlBr₃ • We use symbols to represent elements and also to represent atoms of that element. Au • You must memorize the symbols of the first 18 elements! (this is easier than it sounds) • The order of elements goes from the most metal-like element to the least. Na CH_4 before C before H before F, etc (we'll talk more about this later) • We use subscripts to indicate the <u>number of atoms</u> of that element. С Subscripts of 1 are omitted. Omitted subscripts mean 1. Na⁺ • We use superscripts to indicate the net charge (if any) on the entire particle. • Superscripts of 0 are omitted. HF • Omitted superscripts are assumed to mean 0. Br₂ AI³⁺ NO₂ Sn $C_6H_8NO_4$ Water is a binary compound, it is a Sulfate is a binary ion, it is a polyatomic molecule composed of polyatomic ion composed of 1 2 hydrogen atoms and 1 oxygen sulfur atom and 4 oxygen atoms. atom. It has a charge of zero. It has a charge of minus two.

Chemical Formulas in Compounds

- We use chemical formulas to describe both types of compound.
- There are three kinds of chemical formulas.
- Empirical formula describe the ratio of elements in the compound.
 - Empirical formulas can be applied to molecular or ionic compounds.
 - The smallest whole number ratio of elements is a formula unit.
- Molecular formulas describe the exact number of atoms in each molecule.
 - Molecular formulas can only be used to describe molecular compounds.
- Structural formulas graphically describe the connectivity between atoms.
 - > Structural formals can only be used to describe molecular compounds.
 - We'll talk about these in a later chapter.

- Molecules & Compounds
 - Compounds are not mixtures.
 - Chemical Bonding
 - covalent vs ionic bonds
 - molecular vs ionic compounds
- Chemical Formula
 - Symbols in Formulas
 - Kinds of chemical formula
 - Identification, Composition

Composition

- Molecular Formulas
- Molecular Weight
- Percent Composition
- Elemental Analysis
 - You can calculate the percent composition of elements in a molecule from it's formula.
 - You can compare your results with combustion analysis to confirm the identity of a substance.
 - You can calculate the ratio of elements in a compound from elemental analysis.
 - > This is not the molecular formula!
 - ▶ It's just the ratio. The Empirical Formula
 - You can calculate Molecular Formula form the Empirical formula...
 - Only if you have the molar mass!

The Molecular Blueprint

- 2+3 Hydrogen Atoms
- 3 NO₂ Groups
 - 3 (3x1) Nitrogen Atoms
 - 6 (3x2) Oxygen Atoms

- We use them as shorthand to name of a substance ("Pass me the H₂O")
- Chemical Formulas indicate the composition of a substance.
 - Each element is indicated with it's symbol.
 - The a subscript indicates the total number of atoms of that element.
 - Subscripts of 1 are omitted.
 - Omitted subscripts mean 1.
 - Parenthesis are used to indicate groups of atoms.
- Chemical Formulas may contain hints of the connectivity of the atoms.
- Chemical Formulas may show a CH₃ group of atoms and three NO_2 groups of atoms are bonded to a C_6H_2 group by writing:

$C_6H_2(NO_2)_3CH_3$

instead of: C7H5N3O6

10

You have 2.85 mols of $C_6H_2(NO_2)_3CH_3$ (trinitrotoluene). How many atoms of oxygen do you have?

Solution mol TNT -> molecules TNT -> atoms O 6:022×1023 singlos = 1 mol ZIES mol TINT. 6.022×1023 moleculos 6 oxysenatores 1 molecle TNT = 1.029762×10 =tome $1 C_{6} H_{2} (NO_{2})_{3} CH_{3} = 60$ =/1,03×1025 atoms 0

Molecular Weight/Molar Mass

- Molar Mass also applies to molecules and compounds.
- We know the atomic weight of elements, what one atoms weighs in amu and what one mole of atoms weigh in grams.
- We can use that information to figure out for compounds what one molecule weighs or one mole of molecules weigh.

What is the molecular weight of CO₂? (in amu)

$$\frac{1}{20} \frac{(2 \times 1600)}{20} \frac{1}{200} \frac{1}{2000} \frac{1}{$$

What is the molar mass of CO₂? (in grams)

What does 2.57 mol of CO₂ weigh?

$$2.57 \mod CO_2 \cdot \frac{44.019}{1 \mod CO_2} = 113.10579$$

3 st. 4st. $11139CO_2 (3st.)$

How many moles of CO₂ are in 53.256 grams?

Your experiment requires 4.26 mols of magnesium chloride (MgCl₂). What mass of magnesium chloride do you weigh out for this experiment?

Solution Q Find molar mass of MlgClz 3 mol-Mg 24.31 g/ml Cl 35.45 g/ml) (Mg) = 1(24,31) = 24,31/g 2 (() = 2 (35:45) = 70,90 g 95121 a Mg Cl2 95,21 3/mol 2 4,26 mol MgC(2 · 95,219 = 405,5946 g 406 g Mg C/2

You do an experiment that produces 15.35 grams of nitrogen trioxide (NO₃).

How many moles of NO₃ were produced?

Solution Find moler mass of NO3 P Q N= 14,01 g/ml 0= 16,00 g/mbl O(1(N) = 1(14.01) = 14.0163(0) = 3(16.00) = 46.006 62.07 g NO2 62,019/mol 3 15,35g NO2 - 1mol 62,01g = 0,2475407g = 0.24759

- Molecules & Compounds
 - Compounds are not mixtures.
 - Chemical Bonding
 - covalent vs ionic bonds
 - molecular vs ionic compounds
- Chemical Formula
 - Symbols in Formulas
 - Kinds of chemical formula
 - Identification, Composition
- Composition
 - Molecular Formulas
 - Molecular Weight
 - Percent Composition
- Ele
 - Elemental Analysis
 - You can calculate the percent composition of elements in a molecule from it's formula.
 - You can compare your results with combustion analysis to confirm the identity of a substance.
 - You can calculate the ratio of elements in a compound from elemental analysis.
 - > This is not the molecular formula!
 - ▶ It's just the ratio. The Empirical Formula
 - You can calculate Molecular Formula form the Empirical formula...
 - Only if you have the molar mass!

Combustion Analysis / Percent Composition

52.17% C 13.04% H \rightarrow C₂H₅OH 34.78% O

- A useful technique for analyzing unknown compounds Combustion Analysis, burning an unknown compound and measuring the amounts of products made.
 - This is generally used for organic compounds containing C, H, O.
- By knowing the mass of the unknown and composition of elements in each product, the original amount of each element can be determined.
 - All the original C forms CO₂, the original H forms H₂O, and the original mass of O is found by subtraction.
- This is one way to get the percent composition (also called elemental analysis or elemental composition), of an unknown material.
- Percent Composition is the % by weight of each element in the compound.
- We won't go into the details of combustion analysis calculations, but we will talk using percent composition in different ways.
 - You can calculate percent composition from a chemical formula of a compound you know and compare it to the result of combustion analysis to identify it as the unknown.
 - You can also calculate the chemical formula of an unknown from percent composition, to begin to understand an entirely new compound. (This requires you also know the molecular weight).

A detectives observes a substance at a crime scene and hypothesizes that the substance may be phenol. You have a combustion analysis experiment done, here's the report:

You lookup the formula of phenol and find it is C_6H_6O , could the detectives hypothesis be correct?

Report: C 57.14 % H 4.796 % O 38.06 %

Solution

 $C_{6}[+_{6}0] = 72.06 m_{2}$ $(C_{6}) = 72.06 m_{2}$ $(C_{6}) = 0.048 m_{1}$ $+ 0 = 16.001 m_{1}$ 94.1018 $m_{m} = 94.11 m_{1}$

$$\frac{2}{6}C = \frac{6 \cdot C}{C_6 H_6 0} = \frac{72.06 \, 2m_{\rm U}}{94.11 \, 2m_{\rm U}} = 76.57\%$$

$$\frac{2}{6}H_6 0 = \frac{6 \cdot H}{C_6 H_6 0} = \frac{6.048 \, 2m_{\rm U}}{94.11 \, 2m_{\rm U}} = 6.427\%$$

$$\frac{2}{6}O = \frac{1 \cdot O}{C_6 H_6 0} = \frac{16.00 \, 2m_{\rm U}}{94.11 \, 2m_{\rm U}} = 17.00\%$$

The percent compositions do not match. It's not phenol.

Finding the Empirical Formula

- If you have the elemental analysis, you can figure out the ratio of elements to each other.
- This ratio is the Empirical Formula.
- > To find the empirical formula, assume you have 100.00 grams of the substance.
 - 1. Calculate the grams of each element.
 - 2. Calculate the moles of each element.
 - 3. Divide the moles of each element, but the smallest number of moles you find.
 - 4. You'll get a ratio of each element.
- You may need to multiply it by a small whole number if you get a simple fraction (if you get 1/2 multiply everything by 2, if you get 1/3 or 2/3 multiply by 3, etc).

$$\frac{4.758}{2.379}:\frac{4.758}{2.379}:\frac{2.379}{2.379}:\frac{2.379}{2.379}$$

57.14gC. $\frac{1mol}{12.01a} = 4.758 \mod C$ atoms 4.796gH. $\frac{1mol}{1.008g} = 4.758 \mod H$ atoms 38.06gO. $\frac{1mol}{16.00a} = 2.379 \mod O$ atoms

C2H2

Report: C 57.14 % H 4.796 % 38.06 % \mathbf{O}

Finding the Molar Mass

- The molar mass can only be determined (without already knowing the molecular formula) by experiment.
 - The device we use for this experiment is a mass spectrometer.
 - The material is atomized and shot through a magnet.
 - An electron is knocked of one molecule.
 - By varying the magnetic field you see how much energy is bend the path of the molecule.
 - Once you know how much force it takes to move it, you can get the momentum.
 - If you know the speed and momentum, you can get the mass.

A mass spectrometer experiment gives us the mass of a molecule like caffeine, the same way it gave us the mass of an atom like copper.

Report: C 57.14 % H 4.796 % O 38.06 %

A detectives observes a substance at a crime scene. You have a combustion analysis experiment done. You also use a mass spec to find it's molar mass is 126.11 g/mol. What is the molecular formula of this compound?

Solution

Report: C 57.14 % H 4.796 % O 38.06 %

Assume 100.00g of sample:
57,1496 of 100.00g is 57,14g C 57,14g C
$$\frac{1mol}{12.01a} = 4.758 \mod C$$
 atoms
4.796% of 100.00g is 4.796g H 4.796g H 4.796g H 4.796g H $\frac{1mol}{1008g} = 4.758 \mod H$ atoms
38.06% of 100.00g is 38.06g O 38.06g O $\frac{1mol}{1600g} = 2.379 \mod O$ atoms
 $\frac{C}{4.758}$: $\frac{4.758}{2.379}$: $\frac{2.379}{2.379}$ $\frac{2(c)}{2.016}$ $\frac{24.00}{2.016}$ C_2H_2O $(empirical)$
 $\frac{126.11}{42.043/mol}$
 $\frac{126.11}{42.043/mol}$
 $\frac{126.11}{42.043/mol}$ $(C_2H_2O)_2 = C_6H_6O_3$

- Molecules & Compounds
 - Compounds are not mixtures.
 - Chemical Bonding
 - covalent vs ionic bonds
 - molecular vs ionic compounds
- Chemical Formula
 - Symbols in Formulas
 - Kinds of chemical formula
 - Identification, Composition
- Composition
 - Molecular Formulas
 - Molecular Weight
 - Percent Composition
- Elemental Analysis
 - You can calculate the percent composition of elements in a molecule from it's formula.
 - You can compare your results with combustion analysis to confirm the identity of a substance.
 - You can calculate the ratio of elements in a compound from elemental analysis.
 - > This is not the molecular formula!
 - ▶ It's just the ratio. The Empirical Formula
 - You can calculate Molecular Formula form the Empirical formula...
 - Only if you have the molar mass!

Questions?

How much rocket fuel?

Dinitrogen tetraoxide (N₂O₄) is a rocket fuel. An experiment calls for 6.23 mol of dinitrogen tetraoxide.

How many grams should you weigh out, to get this much fuel? Demonstrate your answer is reliable by providing a dimensional analysis proof.

Find Molo-M235 (2) mol -> q N 14,01 3 mol $1 \mod N_2 Q_q$ 2(N) = 2(14.01) = 25.02 g 4(0) = 4(16.00) = 37.00 g 6 0.02 gmotor mass N20, 60.02 9/mol 6.23 mol. 60.029 = 373,9246 g 3749 N204 (

Is it explosive?

Hydrazoic Acid (HN₃) is a colorless, volatile, and extremely explosive liquid. An unknown liquid is found to have the elemental composition 82.27% N and 17.76% H.

Could this unknown be hydrazoic acid? Demonstrate your answer should be trusted by showing how you calculated the elemental composition of hydrazoic acid.

