Ch10

Concentration

Understanding molarity and concentration.

"Crowdedness" of a Mixture

Concentration

Solution concentration.

- What concentration means?
- Measures of concentration.
- Molarity and others.
- Using molarity as a conversion factor.
- Solving for molarity.
- Solution techniques in the lab.
- Using volumetric glassware.
- Dilution
- Calculating volumes
- Calculating concentrations.
- Titration
- A technique to find concentration.

Heiligens

S40

Spittelau

Solutions \& Concentration

- Solutions are homogeneous mixtures.
- We know mixtures have tunable properties.
- The properties vary with the ratio of the pure substances that make up that mixture.

We describe that ratio as concentration.

- Concentration is the relationship between amount of a minor component of the mixture (a solute) to the major component of the mixture (the solvent).
- Concentration is how "crowded" the mixture is in a substance.
- Concentration is the amount of a solute in a given quantity of solvent.
- Solutions that contain greater amounts of solute are said to be more concentrated.

Dilute
copper sulphate solution

Concentrated
sulphate solution

Saturated sulphate solution

- Solutions that contain lesser amounts of solute are said to be more dilute.
- Solutions that contain the maximum amount of solute a solution can hold are said to be saturated.

Concentration

- Solution concentration.
- What concentration means?

Measures of concentration.

- Molarity and others.
- Using molarity as a conversion factor.
- Solving for molarity.
- Solution techniques in the lab.
- Using volumetric glassware.
- Dilution
- Calculating volumes
- Calculating concentrations.
- Titration
- A technique to find concentration.

S40

Heiligens

Bdorfer

Measures of Concentration

- There are a lot of ways we measure concentration.
- Three common ones are:
- Mole Fraction (X)
- Moles of solute per mole of solution.
- We'll use this when we discuss gases, it's less useful for liquids.
- Mass Percent
- Mass of solute in mass of solution.
- Molarity (M)
- Moles of solute per liter of solution.
- We'll use this a lot for liquids.

$$
X=\frac{\text { moles of solute }}{\text { moles of solution }}
$$

$$
\text { mass perc }=\frac{\text { grams of solute }}{\text { grams of solution }}
$$

$M=\frac{\text { moles of solute }}{\text { liters of solution }}$

- A molecule is a particle.

4 molecules means 4 particles.

- A mole is 6.022×10^{23} particles.

4 mols means $4 \times 6.022 \times 10^{23}$ particles

- Molarity is how many moles (of particles) are dissolved in a 1 L solution.

4 M means in each liter of solution there are $4 \times 6.022 \times 10^{23}$ particles.

mol solute

L solution

Molarity

- Molarity is a measure of concentration.
- The units of molarity are mol/L. We abbreviate mol/L as "M"

mol solute

- Molarity is the moles of a solute divided by the volume of the solution.
- Don't confuse volume of solution with volume of solvent.
- Because the solute(s) also add to the volume of the solution Molarity is not the same thing as dividing the moles of solute by volume of solvent.
- It is easier to calculate concentration if we know the total volume of

L solution

 the solution rather than the volume of the solvent.$3,0 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$ dissonod in 1,0

$$
\begin{aligned}
& \frac{3.0 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2} \mathrm{SO}_{y}}{1.0 \mathrm{~L} \text { water }+160 \mathrm{~mL} \mathrm{H} \mathrm{SO}_{4}}=\frac{3.0 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}{1.16 \mathrm{~L} \text { solution }}= \\
& 2.6 \text { molar or } 2.6 \mathrm{M}
\end{aligned}
$$

$3.0 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$ diluted to 1.0 C in water is:

$$
\frac{3.0 \mathrm{~mol} \mathrm{H} \mathrm{SO}_{2}}{1.0 \mathrm{~L} \text { solution }}=3.0 \text { molar or } 3.0 \mathrm{M}
$$

Concentration

- Solution concentration.
- What concentration means?
- Measures of concentration.
- Molarity and others.

2 Using molarity as a conversion factor.

- Solving for molarity.
- Solution techniques in the lab.
- Using volumetric glassware.
- Dilution
- Calculating volumes
- Calculating concentrations.
- Titration
- A technique to find concentration.

S_{4}

Volks-
Volks-
theater
I4 S15 S45

Molarity

- Molarity is the number of moles of a solute divided by the total volume of

L solution

- Molarity makes it easy to interconvert between volumes of a solution and mols of solute.
- egg. if I have $3.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
- How many mols $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 0.150 L ?

$$
\begin{gathered}
L \rightarrow \mathrm{~mol} \\
0.150<\frac{3.0 \mathrm{~mol}}{1 \mathrm{~L}}=0.0 \mathrm{~mol}=1 \mathrm{~L} \\
0.45 \mathrm{~mol} \mathrm{H} \\
2 \mathrm{SO}_{4}
\end{gathered}
$$

The Molar Subway

The Molar Subway

Problem:
How many grams of CaCl_{2} are needed to completely react with 25.0 mL of $0.100 \mathrm{M} \mathrm{AgNO}_{3}$?

Solution

$$
\mathrm{CaCl}_{2(\mathrm{~s})}+2 \mathrm{AgNO}_{3(\mathrm{aq})} \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+2 \mathrm{AgCl}_{(\mathrm{s})}
$$

(1) $1000 \mathrm{~mL}=1 \mathrm{~L}$

$$
\underbrace{(1)}_{\mathrm{A}_{\mathrm{NO}}^{3}} \underbrace{\mathrm{~mL} \stackrel{4}{\rightarrow} \mathrm{~mol}}_{\mathrm{CaCl}_{2}} \stackrel{(3}{\rightarrow} \underbrace{\text { mol }} \stackrel{4}{\rightarrow} 9
$$

(2) $0,100 \mathrm{~mol}=1 \mathrm{~L}$
(3) $2 \mathrm{AgNO}_{3}=1 \mathrm{CaCl}_{2}$

$$
\text { ssh } \infty \quad \infty \quad \text { sf. } \infty \text { f. }
$$

(4)

$$
\begin{aligned}
& 110.984 \mathrm{~g}=1 \mathrm{~mol} \\
& 25,0 \mathrm{~mL} \cdot \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \cdot \frac{0,100 \mathrm{~mol}}{1 \mathrm{~L}} \cdot \frac{1 \mathrm{CzCl}_{2}}{2 \mathrm{AgNO}_{3}} \cdot \frac{110,984 \mathrm{~g}}{1 \mathrm{~mol}}= \\
& 0,13873 \mathrm{~g} \\
& =0.139 \mathrm{~g} \mathrm{CeCl}_{2}
\end{aligned}
$$

Problem:
How many mL of $3.0 \mathrm{M} \mathrm{HNO}_{3}$ are needed to completely consume 2.7 g Mg ?

Solution

$$
\begin{aligned}
& \mathrm{Mg}(\mathrm{~s})+2 \mathrm{HNO}_{3(\mathrm{aq})} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}
\end{aligned}
$$

(1) $24,3050_{\mathrm{g}}=1 \mathrm{~mol}$
(2) $1 \mathrm{Mg}=21+N 0_{3}$
(3) $3,0 \mathrm{MHNO}_{3}$
(4) $K L=1000 \mathrm{~mL}$

$$
2,7 \mathrm{~g} \cdot \frac{1 \mathrm{~mol}}{24,3050 \mathrm{~g}} \cdot \frac{2 \mathrm{HNO}_{3}}{1 \mathrm{Mg}} \cdot \frac{1 \mathrm{~L}}{3,0 \mathrm{~mol}} \cdot \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}}=74 \mathrm{~mL}
$$

Ch10

Concentration

- Solution concentration.
- What concentration means?
- Measures of concentration.
- Molarity and others.
- Using molarity as a conversion factor.
- Solving for molarity.

Solution techniques in the lab.

- Using volumetric glassware.
- Dilution
- Calculating volumes
- Calculating concentrations.
- Titration
- A technique to find concentration.

$\mathrm{S}_{\mathbf{K}}$

Heligen

Volumetric Glassware

- Volumetric Pipets and Volumetric Flasks have a long thin neck and with a calibration mark.
- Small changes in volume make big changes in the level of the liquid allowing you to precisely measure the volume for which the device is calibrated.
- The volume is right when the meniscus of the liquid meets the calibration mark.

Dilution

- Stock solutions are solutions of known concentration.
- Most solutions are made by diluting a stock solution to a new molarity.
- Dilution just means adding more solvent.
- Dilution never changes the number of mols dissolved in the solution.
- just the volume of the solution around them.
- Molarity and volume change with dilution, but because the mols don't change...
- the ratio of volume to molarity is constant.
- What volume must you dilute 25 mL of $8.0 \mathrm{M} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ to make a 2.0 M solution?
$V_{A}=\frac{V_{B} N_{B}}{N_{A}}=\frac{8.0 \mathrm{M} .25 \mathrm{~mL}}{2.0 \mathrm{M}}=100 \mathrm{~mL}$
- How many mL of $6.0 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}$ do you need to make 200. mL of $2.0 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}$?
$V_{B}=\frac{V_{A} M_{A}}{M_{B}}=\frac{200 . \mathrm{mL} \cdot 2.0 \mathrm{Ml}}{6.0 M}=67 \mathrm{~mL}$

moles before $=$ moles after

molarity \times volume $=$ moles

Important:

- Don't confuse stoichiometry with dilution problems!

Concentration

- Solution concentration.
- What concentration means?
- Measures of concentration.
- Molarity and others.
- Using molarity as a conversion factor.
- Solving for molarity.
- Solution techniques in the lab.
- Using volumetric glassware.
- Dilution
- Calculating volumes
- Calculating concentrations.

Titration

- A technique to find concentration.

$\mathrm{S}_{\mathbf{K}}$

Heiligens

5 Schotten
Rathaus

Titration

$$
\mathrm{HCl}_{(\mathrm{aq})}+\mathrm{NaOH}_{(\mathrm{aq})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{NaCl}_{(\mathrm{aq})}
$$

- Titration is an analytic technique for determining the concentration in one solution by carefully adding a measured quantity of a known solution and observing a clear end point.
- The unknown is called an analyte.
- The standard solution is called a titrant or titrator.
- The end point is the point in the experiment where an indicator suggests the quantities of analyte and titrant are equal.
- The equivalence point is the point where they actually are.
- With a good chemical indicator, the two should be close, but your equivalence point is almost always reached before you see the end point.
- An indicator is a chemical added to the mixture that changes color close to the equivalence point.
- Finding the end point with a chemical indicator requires some skill.

Problem:
A 20.0 mL sample of $\mathrm{NaOH}_{(a q)}$ is titrated to an end point with 45.7 mL of $0.500 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ (aq), what is concentration of the NaOH solution?

Solution

$$
\begin{equation*}
2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O} \tag{1}
\end{equation*}
$$

(1) $1000 \mathrm{~mL}=1 \mathrm{~L}$
(2) $0.500 \mathrm{~mol}=1 \mathrm{~L}$
(3) $2 \mathrm{NaOL}=1 \mathrm{H}_{2} \mathrm{SO}_{4}$

Pant A

$$
45.7 \mathrm{~mL} \cdot \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \cdot \frac{0.500^{\mathrm{mol}}}{1 \mathrm{~L}} \cdot \frac{21 / 20 \mathrm{H}}{\mathrm{H}_{2} 504}=4.57 \times 10^{-2} \mathrm{~mol}
$$

Part B

$$
\begin{aligned}
& 20,0 \mathrm{~mL}=0.0200 \mathrm{~L} \\
& \frac{4.57 \times 10^{-2} \mathrm{~mol}}{0.0200 \mathrm{~L}}=2.29 \mathrm{M}
\end{aligned}
$$

Problem:
A 20.0 mL sample of $\mathrm{NaOH}_{(a q)}$ is titrated to an end point with 45.7 mL of $0.500 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ (aq), what is concentration of the NaOH solution?

Solution

$$
\begin{equation*}
2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O} \tag{1}
\end{equation*}
$$

(1) $1000 \mathrm{~mL}=1 \mathrm{~L}$
(2) $0.500 \mathrm{~mol}=1 \mathrm{~L}$
(3) $2 \mathrm{NaOL}=1 \mathrm{H}_{2} \mathrm{SO}_{4}$

Pant A

$$
45.7 \mathrm{~mL} \cdot \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \cdot \frac{0.500^{\mathrm{mol}}}{1 \mathrm{~L}} \cdot \frac{21 / 20 \mathrm{H}}{\mathrm{H}_{2} 504}=4.57 \times 10^{-2} \mathrm{~mol}
$$

Part B

$$
\begin{aligned}
& 20,0 \mathrm{~mL}=0.0200 \mathrm{~L} \\
& \frac{4.57 \times 10^{-2} \mathrm{~mol}}{0.0200 \mathrm{~L}}=2.29 \mathrm{M}
\end{aligned}
$$

Concentration

- Solution concentration.
- What concentration means?
- Measures of concentration.
- Molarity and others.
- Using molarity as a conversion factor.
- Solving for molarity.
- Solution techniques in the lab.
- Using volumetric glassware.
- Dilution
- Calculating volumes
- Calculating concentrations.
- Titration
- A technique to find concentration.

$\mathrm{S}_{\mathbf{K}}$

5 Schott
Rathaus

Questions?

