Ch10

Stoichiometry

Using balanced equations, mole ratios and molarity. "The Molar Subway"

Stoichiometry

Stoichiometry \& the mole ratio.

- A new conversion factor.
- Already in our tool box:
- Atomic Mass; Molar Mass; Avogadro's \# (chapter 2)
- Molecular Mass; Molecular Formula (chapter 3)
- The balanced equation.
- Example Stoichiometry Calculations
- mol \rightarrow mol calcs (2 steps)
- mass \rightarrow mol; mol \rightarrow mass calcs (3 steps)
- mass \rightarrow mass (4 steps)
- Liming Reagent Calculations
- What is a limiting reagent?
- Finding the liming reagent.
- Theoretical Yield \& Percent Yield.
- Excess Reagent
- Finding excess reagent remaining.

Solution concentration.

- What concentration means?
- Measures of concentration.
- Molarity and others.

3.0 M 0.5 M

- Using molarity as a conversion factor.
- Solving for molarity.
- Solution techniques in the lab.
- Using volumetric glassware.

Dilution

- Calculating volumes
- Calculating concentrations.
- Titration
- A technique to find concentration.

Stoichiometry

- Stoichiometry is the relationship between relative quantities of substances in a reaction or molecular formula.
- Having a balanced equation let's us see the ratio of products formed from reactants.
- In the balanced equation to the right, we can see that every propane molecule $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ produces three carbon dioxide $\left(\mathrm{CO}_{2}\right)$ molecules.
- Therefore any number of propane molecules burnt, will produce three times as many carbon dioxide molecules.
- The balanced equation reveals all the possible stoichiometric relationships between reactants and products.
- It let's us answer any stoichiometric question about about a system described by that equation.

Eq 1:

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \uparrow+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l}}
$$

Eq 2:
$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
stoi \cdot chi \cdot om $\cdot e \cdot$ try /,stoikē'ämitrē/
noun
noun: stoichiometry; noun: stoichometry

1. 1 .
the relationship between the relative quantities of substances taking part in a reaction or forming a compound, typically a ratio of whole integers.

Origin: early 19th cent.: from Greek stoikheion 'element' + -metry.

Stoichiometry

$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

The mole ratio

$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

- If I consume 15 molecules oxygen, how many water molecules do I create?

$$
15 \text { mopalles } \mathrm{O}_{2} \cdot \frac{4 \mathrm{H}_{2} \mathrm{O}}{5 \mathrm{O}_{2}}=12 \text { moleals } \mathrm{H}_{2} \mathrm{O}
$$

- If I consume 2.7 mol oxygen, how many mol water do I create?
- ... and how many mol CO_{2} do I create?
- ... and how many mol $\mathrm{C}_{3} \mathrm{H}_{8}$ do I consume?

$$
\begin{aligned}
& 2.7 \mathrm{~mol} \mathrm{O} \\
& 2.7 \mathrm{H}_{2} \mathrm{O} \\
& 5 \mathrm{O}_{2}
\end{aligned}=2.2 \mathrm{~mol} \mathrm{H} \mathrm{H} \mathrm{O}
$$

The mole ratio

$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$$
\begin{gathered}
5 \mathrm{O}_{2}=3 \mathrm{CO}_{2} \\
5 \mathrm{O}_{2}=4 \mathrm{H}_{2} \mathrm{O} \\
1 \mathrm{C}_{3} \mathrm{H}_{8}=3 \mathrm{CO}_{2} \\
3 \mathrm{CO}_{2}=4 \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

There are 12 combinations in this reaction.
12 mole ratio conversion factors.
The Balanced Equation unlocks them all.
This tool is especially powerful when we combine it with tools from the previous chapters. ss

Chapter 2: Atomic Mass \& Avogadro’s Number

Elements like Copper (Cu)

- In chapter 2
we introduced two important conversion factors:
- Molar Mass/Atomic Mass
(the average mass of atoms of that elements)
- We get this from the periodic table
- It tell's us the weight of:
- 1 mol of a substance (in grams)
- 1 atom of a substance (in amu)
grams \longrightarrow mol

$$
16.5 \mathrm{~g} C_{u} \cdot \frac{1 \mathrm{~mol}}{63.55 \mathrm{~g}}=0.260 \mathrm{~mol} \mathrm{Cu}
$$

- Avogadro's Number
- 6.022×1023
- It's a measurement
- You have to memorize it
- It let's us go from the moles to molecules or atoms

$$
\text { mol } \rightarrow \text { moleciles }
$$

$0.260 \mathrm{~mol} \mathrm{Cu} \cdot \frac{6.022 \times 1 \mathrm{C}^{23}}{1 \mathrm{~mol}}=1.56 \times 10^{23}$ moleculs

Chapter 3: Molecular Formula \& Molar Mass

Molecules like Water $\left(\mathrm{H}_{2} \mathrm{O}\right)$

- In chapter 3, we took apart molecules and introduced new conversion factors.
- Molecular Formula (\& Empirical Formula)
- It let's us understand the composition of molecules.
- We can use it as a conversion factor to go from molecules to how many atoms of any kind are in that molecule.
moleculos $\mathrm{H}_{2} \mathrm{O} \rightarrow$ atoms H
725 molecules $\mathrm{H}_{2} \mathrm{O} \cdot \frac{2 \mathrm{H}}{1 \mathrm{H}_{2} \mathrm{O}}=1,450$ atans H
- Molar Mass/Molecular Mass
- It relates weight to mols for whole molecules.

$$
\begin{gathered}
\mathrm{mol} \rightarrow \mathrm{gras} \\
2.5 \mathrm{~mol} \mathrm{H} \mathrm{H} \mathrm{O} \cdot \frac{18.02 \mathrm{~g}}{1 \mathrm{~mol}}=45,05 \mathrm{~g} \mathrm{HzO}
\end{gathered}
$$

Chapter 4: the Mole Ratio

$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

- In chapter 4 we introduce the:
- Mole Ratio
- This new conversion factor let's us go between substances in a balanced chemical equation.
- Putting them all together means you can calculate grams, moles, molecules, and more for any substance in a reaction, from any quantity of another substance in the reaction.
- The mole ratio unlocks the whole map.

Using a Balanced Equation

Using a Balanced Equation

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Using a Balanced Equation

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

- We will use the molecular scale to design and understand reactions.
- We will use the molar scale to conduct reactions.
- We will add more conversion factors that start with mols, in future chapters.
- But the mole ratio will stay at the heart of all our reaction stoichiometry maps.

Stoichiometry

- Stoichiometry \& the mole ratio.
- A new conversion factor.
- Already in our tool box:
- Atomic Mass; Molar Mass; Avogadro's \# (chapter 2)
- Molecular Mass; Molecular Formula (chapter 3)

The balanced equation.

- Example Stoichiometry Calculations
- mol \rightarrow mol calcs (2 steps)
- mass \rightarrow mol; mol \rightarrow mass calcs (3 steps)
- mass \rightarrow mass (4 steps)
- Liming Reagent Calculations
- What is a limiting reagent?
- Finding the liming reagent.
- Theoretical Yield \& Percent Yield.
- Excess Reagent
- Finding excess reagent remaining.

- Solution concentration.
- What concentration means?
- Measures of concentration.
- Molarity and others.

3.0 M 0.5 M

- Using molarity as a conversion factor.
- Solving for molarity.
- Solution techniques in the lab.
- Using volumetric glassware.

Dilution

- Calculating volumes
- Calculating concentrations.
- Titration
- A technique to find concentration.

Problem:
How many moles of $\mathrm{C}_{3} \mathrm{H}_{8}$ can you burn in 19.2 mol of oxygen gas?

solution $\quad \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(1) $5 O_{2}=1 C_{3} H_{8}$

$$
19.2 \text { nd } O_{2} \cdot \frac{1 C_{3} \text { Its }}{5 \mathrm{O}_{2}}=3.84 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}
$$

Problem:
How many moles of $\mathrm{C}_{3} \mathrm{H}_{8}$ were burnt to produce 26.2 g of carbon dioxide?

solution $\quad \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(1) mole mass CO_{2}

$$
\mathrm{gCO}_{2} \xrightarrow{(1)} \mathrm{mol} \mathrm{CO}_{2} \xrightarrow{(2)} \mathrm{mol}_{3} \mathrm{C}_{8}
$$

$t_{\mathrm{mol}}=44.01 \mathrm{~g}$
(2) mole ratio $\mathrm{CO}_{2} / \mathrm{C}_{3} \mathrm{H}_{8}$

$$
26.2 \mathrm{~g} \mathrm{CO}_{2} \cdot \frac{1 \mathrm{~mol}}{44.01 \mathrm{~g}} \cdot \frac{1 \mathrm{C}_{3} \mathrm{H}_{8}}{3 \mathrm{CO}_{2}}=\overline{0.198 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}}
$$

$$
3 \mathrm{co}_{2}=1 c_{3} \mathrm{H}_{8}
$$

Problem:

How many grams of water were produced when you burnt 24.2 grams $\mathrm{C}_{3} \mathrm{H}_{8}$?

Solution $\quad \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$$
2
$$

$$
44.09 \mathrm{~g}=1 \mathrm{~mol}
$$

(2) noirato $C_{3} H_{5}: H_{2} \mathrm{O}$ $1 \mathrm{C}_{3} \mathrm{H}_{8}=4 \mathrm{H}_{2} \mathrm{O}$molermass $\mathrm{H}_{2} \mathrm{O}$ $2(1) \frac{2.016}{16.001}$
$1(0) \frac{16.016}{18.6}$
$18.02 \mathrm{~g}=1 \mathrm{~mol}$
$\mathrm{gC}_{3} \mathrm{H}_{8} \xrightarrow{(1)} \mathrm{mol} \mathrm{C}_{3} \mathrm{H}_{8} \xrightarrow{(2)} \mathrm{molH} \mathrm{H}_{2} \xrightarrow{3} \mathrm{gH}_{2} \mathrm{O}$
$24.2 \mathrm{gC} \mathrm{H}_{8} \mathrm{H}_{8} \cdot \frac{1 \mathrm{~mol}}{44,09 \mathrm{~g}} \cdot \frac{4 \mathrm{H}_{2} 0}{1 \mathrm{C}_{3} \mathrm{H}_{8}} \cdot \frac{18,02 \mathrm{~g}}{1 \mathrm{~mol}}=$ $39,56307553 \mathrm{~g}$

$$
39,6 \mathrm{~g} \mathrm{H} \mathrm{HO}
$$

Stoichiometry

- Stoichiometry \& the mole ratio.
- A new conversion factor.
- Already in our tool box:
- Atomic Mass; Molar Mass; Avogadro's \# (chapter 2)
- Molecular Mass; Molecular Formula (chapter 3)
- The balanced equation.
- Example Stoichiometry Calculations
- mol \rightarrow mol calcs (2 steps)
- mass \rightarrow mol; mol \rightarrow mass calcs (3 steps)
- mass \rightarrow mass (4 steps)

Liming Reagent Calculations

- What is a limiting reagent?
- Finding the liming reagent.
- Theoretical Yield \& Percent Yield.
- Excess Reagent
- Finding excess reagent remaining.

Solution concentration.

- What concentration means?
- Measures of concentration.
- Molarity and others.

3.0 M 0.5 M

- Using molarity as a conversion factor.
- Solving for molarity.
- Solution techniques in the lab.
- Using volumetric glassware.

Dilution

- Calculating volumes
- Calculating concentrations.
- Titration
- A technique to find concentration.

Limiting/Excess Reagents

- The limiting reactant (or limiting reagent) is the reactant that limits the amount of product that can be made.
- The reaction stops when the limiting reactant is used up.
- The amount of limiting reactant controls how much product is formed.
- The excess reactant is the reactant that remains when the reaction stops. reactant.

Limiting/Excess Reagents

- Iron and sulfur react to make iron (III) sulfide. If I have 20.0 grams of each, which is the limiting reagent?

It's just like making bicycles

- which pile runs out first?

Answer: start making bicycles, the one that makes the least bicycles is the limiting reagent.
(bicycles = any product)

Limiting/Excess Reagents

- Iron and sulfur react to make iron (III) sulfide. If I have 20.0 grams of each, which is the limiting reagent?

Iron + Sulfir \rightarrow Iron (III) Sulfide

$$
\begin{aligned}
& \mathrm{Fe}+\mathrm{S}_{8} \rightarrow \mathrm{Fe}_{2} \mathrm{~S}_{3} \frac{\mathrm{Fe} 5}{\mathrm{R} 1} 8 \\
& \mathrm{Fe}+\frac{3}{8} \mathrm{~S}_{8} \rightarrow \mathrm{Fe}_{2} \mathrm{~S}_{3} \frac{R 1}{} \frac{1}{P} 2{ }_{2} \\
& 2 \mathrm{Fe}+\frac{3}{8} \mathrm{~S} 8 \rightarrow \mathrm{Fe}_{2} \mathrm{~S}_{3} \frac{R 23}{P 2} \\
& 16 \mathrm{Fe}+3 \mathrm{~S} \rightarrow 8 \mathrm{Fe}_{2} \mathrm{~S}_{3}
\end{aligned}
$$

Problem:
Iron and sulfur react to make iron (III) sulfide. If I have 20.0 grams of each, which is the limiting reagent?

Solution $\left|16 \mathrm{Fe}+3 \mathrm{~S}_{8} \rightarrow 8 \mathrm{Fe}_{2} \mathrm{~S}_{3}\right|$

$$
\begin{aligned}
& 9 \mathrm{Fe} \xrightarrow{(1)} \text { mol } \mathrm{Fe} \xrightarrow{(2)} \text { mol } \mathrm{Fe}_{2} \mathrm{~S}_{3} \\
& 9 \mathrm{~S}_{8} \xrightarrow{(3)} \mathrm{mol} \mathrm{~S}_{8} \xrightarrow{(4)} \mathrm{mol} \mathrm{Fe}_{2} \mathrm{~S}_{3}
\end{aligned}
$$

(1) $55.85 \mathrm{~g}=1 \mathrm{~mol}$
(2) $16 \mathrm{Fe}=8 \mathrm{Fe}_{2} \mathrm{~S}_{3}$
(3)

$$
\begin{aligned}
8(s) & =32.07 \times 8 \\
& =256.69 / \mathrm{mol}
\end{aligned}
$$

Fe
(4) $3 \mathrm{~S}_{8}=8 \mathrm{Fe}_{2} \mathrm{~S}_{3}$

58

$$
\frac{58}{20.0 \mathrm{~g}} \mathrm{Sg} \cdot \frac{1 \mathrm{~mol}}{256.6 \mathrm{~g}} \cdot \frac{8 \mathrm{Fe}_{2} \mathrm{~S}_{3}}{3 \mathrm{~S}_{8}}=0.208 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{~S}_{3}
$$

So Iron. Runs out First.
Iron is the limily reagent sulfur is te excossreagent.

A word about yield...

- So our theoretical yield for this reaction is 0.208 moles (or the equivalent in grams).
- But we rarely achieve a theoretical yield.
- Our actual yield (aka experimental yield) is always less.
- We report the percent yield for any reaction to show how close we came.
- Percent yield $=($ experimental yield $/$ theoretical yield $) \times 100$

$$
\begin{aligned}
& \text { It ourdued } 0.135^{\text {mes }} \\
& \% Y=\frac{0.135}{0.208}=64.9 \%
\end{aligned}
$$

Stoichiometry

- Stoichiometry \& the mole ratio.
- A new conversion factor.
- Already in our tool box:
- Atomic Mass; Molar Mass; Avogadro's \# (chapter 2)
- Molecular Mass; Molecular Formula (chapter 3)
- The balanced equation.
- Example Stoichiometry Calculations
- mol \rightarrow mol calcs (2 steps)
- mass \rightarrow mol; $\mathrm{mol} \rightarrow$ mass calcs (3 steps)
- mass \rightarrow mass (4 steps)
- Liming Reagent Calculations
- What is a limiting reagent?
- Finding the liming reagent.
- Theoretical Yield \& Percent Yield.

Excess Reagent

- Finding excess reagent remaining.
- Solution concentration.
- What concentration means?
- Measures of concentration.
- Molarity and others.

3.0 M 0.5 M

- Using molarity as a conversion factor.
- Solving for molarity.
- Solution techniques in the lab.
- Using volumetric glassware.

Dilution

- Calculating volumes
- Calculating concentrations.
- Titration
- A technique to find concentration.

Problem:
Iron and sulfur react to make iron (III) sulfide. If I have 20.0 grams of each, which is the limiting reagent?
How much of the excess reagent is left over?

Solution

$$
16 \mathrm{Fe}+3 \mathrm{~S}_{8} \rightarrow 8 \mathrm{Fe}_{2} \mathrm{~S}_{3}
$$

$$
\mathrm{geP}^{\mathrm{Fe}} \mathrm{~mol} \mathrm{Fe} \xrightarrow{(5)} \operatorname{mol} \mathrm{S}_{8} \xrightarrow{(3)} 9 \mathrm{~S}_{8} \text { (consumed) }
$$

(1) $55.85 \mathrm{~g}=1 \mathrm{~mol}$
(2) $16 \mathrm{Fe}=8 \mathrm{Fe}_{2} \mathrm{~S}_{3}$
(3)

$$
20.0 \mathrm{gFe} \cdot \frac{1 \mathrm{~mol}}{55.85 \mathrm{~g}} \cdot \frac{3 \mathrm{~S}_{8}}{16 \mathrm{Fe}} \cdot \frac{256.6 \mathrm{~g}}{1 \mathrm{~mol}}=17,2 \mathrm{~g} \mathrm{~S}_{8}
$$

(4) $3 \mathrm{~S}_{8}=8 \mathrm{Fe}_{2} \mathrm{~S}_{3}$

So Iron Runs out First.
Iron is the liming reagent sulfur is te excesrreagent.

$$
\begin{array}{r}
20.01 \mathrm{~g} \text { (stent) } \\
17.219 \text { (consumed } \\
-\quad \begin{array}{r}
17.9 \text { (let over) }
\end{array}
\end{array}
$$

(5) $3 \mathrm{~S}_{8}=16 \mathrm{Fe}$

$$
2.8 \mathrm{~g} \mathrm{~S}_{8} \text { lefter }
$$

Problem:

Stannic oxide (32.4 g) and carbon monoxide (14.3 g) react to form stannous oxide and carbon dioxide.
(a) What is the limiting reagent?
(b) How much of the excess reagent is left over?

Solution

A plan:
Step 1: Find the balanced chemical equation.
Step 2: Figure out how much product (any product) you could get from each reagent. (hint: you'll need mole ratios)

Step 3: Identify the limiting reagent (the one that runs out first)
Step 4: Figure out how much of the excess reagent you actually use.
Step 5: Subtract what you used, from what you started with, to find out how much of the excess reagent is left over.

Problem:
Stannic oxide (32.4 g) and carbon monoxide (14.3 g) react to form stannous oxide and carbon dioxide.
(a) What is the limiting reagent?
(b) How much of the excess reagent is left over?

Solution

$$
\begin{aligned}
& \text { stannic oxide + carbon monoxide } \rightarrow \text { stannous oxide }+ \text { carbon dioxide } \\
& \mathrm{Sn}^{+4} \mathrm{O}^{2-} \\
& \qquad \mathrm{Sn}^{2+} \mathrm{O}^{2-} \\
& \mathrm{SnO} \mathrm{O}_{2}+\mathrm{CO} \rightarrow \operatorname{SnO}+\mathrm{CO}_{2} R_{p} \mathrm{Sn}_{1}^{1} \mathrm{C}^{1} 1_{3}^{3}
\end{aligned}
$$

Problem:
Stannic oxide (32.4 g) and carbon monoxide (14.3 g) react to form stannous oxide and carbon dioxide.
(a) What is the limiting reagent?
(b) How much of the excess reagent is left over?

Solution

$$
\mathrm{SnO}_{2}+\mathrm{CO} \rightarrow \mathrm{SnO}+\mathrm{CO}_{2}
$$

(1.) $1 \mathrm{~mol} \mathrm{SNO}_{2}=150,7 / \mathrm{g}$

$$
\begin{array}{r}
118.711 \\
+32.001 \\
\hline 150.711
\end{array}
$$

(2) $\left|\mathrm{mol} \mathrm{SNO}_{2}=\operatorname{Ino}\right| \mathrm{CO}_{2}$
(3) $1 \mathrm{~mol} \mathrm{cO}=28.01 \mathrm{~g}$ $\begin{array}{r}12.01 \\ +16.01^{1} \\ \hline 28.01\end{array}$
(4) I $\mathrm{molCO}=1 \mathrm{~mol} \mathrm{CO} 2$
SHO_{2} is Limy Regent.

$$
\begin{aligned}
& 32,4 \mathrm{~g} \mathrm{SnO}_{2} \cdot \frac{1 \mathrm{~mol}}{150.71 \mathrm{~g}} \cdot \frac{1 \mathrm{CO}_{2}}{1 \mathrm{SnO}_{2}}=0.215 \mathrm{~mol} \leftarrow \text { Limits Reagent } \\
& 14.3 \mathrm{~g} \mathrm{CO} \cdot \frac{1 \mathrm{~mol}}{25.01 \mathrm{~g}} \cdot \frac{1 \mathrm{CO}}{1 \mathrm{CO}}=0.511 \mathrm{~mol}
\end{aligned}
$$

Stoichiometry

- Stoichiometry \& the mole ratio.
- A new conversion factor.
- Already in our tool box:
- Atomic Mass; Molar Mass; Avogadro's \# (chapter 2)
- Molecular Mass; Molecular Formula (chapter 3)

Solution concentration.

- What concentration means?
- Measures of concentration.
- Molarity and others.

3.0 M 0.5 M

- Using molarity as a conversion factor.
- Solving for molarity.
- The balanced equation.
- Example Stoichiometry Calculations
- mol \rightarrow mol calcs (2 steps)
- mass \rightarrow mol; $\mathrm{mol} \rightarrow$ mass calcs (3 steps)
- mass \rightarrow mass (4 steps)
- Liming Reagent Calculations
- What is a limiting reagent?
- Finding the liming reagent.
- Theoretical Yield \& Percent Yield.
- Excess Reagent
- Finding excess reagent remaining.

Solutions \& Concentration

- Solutions are homogeneous mixtures.
- We know mixtures have tunable properties.
- The properties vary with the ratio of the pure substances that make up that mixture.

We describe that ratio as concentration.

- Concentration is the relationship between amount of a minor component of the mixture (a solute) to the major component of the mixture (the solvent).
- Concentration is how "crowded" the mixture is in a substance.
- Concentration is the amount of a solute in a given quantity of solvent.
- Solutions that contain greater amounts of solute are said to be more concentrated.

- Solutions that contain lesser amounts of solute are said to be more dilute.
- Solutions that contain the maximum amount of solute a solution can hold are said to be saturated.

A solution is a homogenous mixture.

A solvent is the largest

Measures of Concentration

- There are a lot of ways we measure concentration.
- Three common ones are:
- Mole Fraction (X)
- Moles of solute per mole of solution.

$$
X=\frac{\text { moles of solute }}{\text { moles of solution }}
$$

- We'll use this when we discuss gases, it's less useful for liquids.
- Molality (m)
- Moles of solute, per kg of solution.
- We won't use this.
- Molarity (M)
- Moles of solute per liter of solution.
- We'll use this a lot for liquids.
$M=\frac{\text { moles of solute }}{\text { liters of solution }}$

$$
m=\frac{\text { moles of solute }}{\text { kilogram of solvent }}
$$

Molarity

- Molarity is a measure of concentration.
- The units of molarity are mol/L. We abbreviate mol/L as "M"

mol solute

- Molarity is the moles of a solute divided by the volume of the solution.
- Don't confuse volume of solution with volume of solvent.
- Because the solute(s) also add to the volume of the solution Molarity is not the same thing as dividing the moles of solute by volume of solvent.
- It is easier to calculate molarity if we know the total volume of the

L solution

 solution rather than the volume of the solvent.$3,0 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2} \mathrm{SO}_{4}$ dissolved in 1,0L water is:

$$
\frac{3,0 \mathrm{~mol} \mathrm{H}}{2} \frac{\mathrm{SO}_{4}}{1,0 \mathrm{~L} \text { water }+160 \mathrm{~mL} \mathrm{H}_{2} \mathrm{SO}_{4}}=\frac{3,0 \mathrm{~mol} \mathrm{H}}{2} \mathrm{SO}_{4}{ }^{2} 16 \mathrm{~L} \text { solution }=
$$

$$
2,6 \text { molar or } 2,6 \mathrm{M}
$$

$3.0 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2} \mathrm{SO}_{4}$ diluted to 1.0 C in water is:

$$
\frac{3.0 \mathrm{~mol} \mathrm{H}}{2} \mathrm{SO}_{4}-3.0 \mathrm{molar} \text { or } 3.0 \mathrm{M}
$$

Stoichiometry

- Stoichiometry \& the mole ratio.
- A new conversion factor.
- Already in our tool box:
- Atomic Mass; Molar Mass; Avogadro’s \# (chapter 2)
- Molecular Mass; Molecular Formula (chapter 3)
- The balanced equation.
- Example Stoichiometry Calculations
- mol \rightarrow mol calcs (2 steps)
- mass \rightarrow mol; $\mathrm{mol} \rightarrow$ mass calcs (3 steps)
- mass \rightarrow mass (4 steps)
- Liming Reagent Calculations
- What is a limiting reagent?
- Finding the liming reagent.
- Theoretical Yield \& Percent Yield.
- Excess Reagent
- Finding excess reagent remaining.

- Solution concentration.
, What concentration means?
- Measures of concentration.
- Molarity and others.

3.0 M 0.5 M

Using molarity as a conversion factor.

- Solving for molarity.
- Solution techniques in the lab.
- Using volumetric glassware.

Dilution

- Calculating volumes
- Calculating concentrations.
- Titration
- A technique to find concentration.

Molarity

- Molarity is the number of moles of a solute divided by the total volume of

L solution

- Molarity makes it easy to interconvert between volumes of a solution and mols of solute.
- egg. if I have $3.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
- How many mols $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 0.150 L ?

$$
\begin{gathered}
L \rightarrow \mathrm{~mol} \\
0.150<\frac{3.0 \mathrm{~mol}}{1 \mathrm{~L}}=0.0 \mathrm{~mol}=1 \mathrm{~L} \\
0.45 \mathrm{~mol} \mathrm{H} \\
2 \mathrm{SO}_{4}
\end{gathered}
$$

The Molar Subway

The Molar Subway

Problem:
How many grams of CaCl_{2} are needed to completely react with 25.0 mL of $0.100 \mathrm{M} \mathrm{AgNO}_{3}$?

Solution

$$
\mathrm{CaCl}_{2(\mathrm{~s})}+2 \mathrm{AgNO}_{3(\mathrm{aq})} \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+2 \mathrm{AgCl}_{(\mathrm{s})}
$$

(1) $1000 \mathrm{~mL}=1 \mathrm{~L}$

$$
\underbrace{(1)}_{\mathrm{A}_{\mathrm{NO}}^{3}} \underbrace{\mathrm{~mL} \stackrel{4}{\rightarrow} \mathrm{~mol}}_{\mathrm{CaCl}_{2}} \stackrel{(3}{\rightarrow} \underbrace{\text { mol }} \stackrel{4}{\rightarrow} 9
$$

(2) $0,100 \mathrm{~mol}=1 \mathrm{~L}$
(3) $2 \mathrm{AgNO}_{3}=1 \mathrm{CaCl}_{2}$

$$
\text { ssh } \infty \quad \infty \quad \text { sf. } \infty \text { f. }
$$

(4)

$$
\begin{aligned}
& 110.984 \mathrm{~g}=1 \mathrm{~mol} \\
& 25,0 \mathrm{~mL} \cdot \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \cdot \frac{0,100 \mathrm{~mol}}{1 \mathrm{~L}} \cdot \frac{1 \mathrm{CzCl}_{2}}{2 \mathrm{AgNO}_{3}} \cdot \frac{110,984 \mathrm{~g}}{1 \mathrm{~mol}}= \\
& 0,13873 \mathrm{~g} \\
& =0.139 \mathrm{~g} \mathrm{CeCl}_{2}
\end{aligned}
$$

Problem:
How many mL of $3.0 \mathrm{M} \mathrm{HNO}_{3}$ are needed to completely consume 2.7 g Mg ?

Solution

$$
\begin{aligned}
& \mathrm{Mg}(\mathrm{~s})+2 \mathrm{HNO}_{3(\mathrm{aq})} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}
\end{aligned}
$$

(1) $24,3050_{\mathrm{g}}=1 \mathrm{~mol}$
(2) $1 \mathrm{Mg}=21+N 0_{3}$
(3) $3,0 \mathrm{MHNO}_{3}$
(4) $K L=1000 \mathrm{~mL}$

$$
2,7 \mathrm{~g} \cdot \frac{1 \mathrm{~mol}}{24,3050 \mathrm{~g}} \cdot \frac{2 \mathrm{HNO}_{3}}{1 \mathrm{Mg}} \cdot \frac{1 \mathrm{~L}}{3,0 \mathrm{~mol}} \cdot \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}}=74 \mathrm{~mL}
$$

Stoichiometry

- Stoichiometry \& the mole ratio.
- A new conversion factor.
- Already in our tool box:
- Atomic Mass; Molar Mass; Avogadro's \# (chapter 2)
- Molecular Mass; Molecular Formula (chapter 3)
- The balanced equation.
- Example Stoichiometry Calculations
- mol \rightarrow mol calcs (2 steps)
- mass \rightarrow mol; $\mathrm{mol} \rightarrow$ mass calcs (3 steps)
- mass \rightarrow mass (4 steps)
- Liming Reagent Calculations
- What is a limiting reagent?
- Finding the liming reagent.
- Theoretical Yield \& Percent Yield.
- Excess Reagent
- Finding excess reagent remaining.

Solution techniques in the lab.

- Using volumetric glassware.

Dilution

- Calculating volumes
- Calculating concentrations.
- Titration
- A technique to find concentration.

Volumetric Glassware

- Volumetric Pipets and Volumetric Flasks have a long thin neck and with a calibration mark.
- Small changes in volume make big changes in the level of the liquid allowing you to precisely measure the volume for which the device is calibrated.
- The volume is right when the meniscus of the liquid meets the calibration mark.

Dilution

- Stock solutions are solutions of known concentration.
- Most solutions are made by diluting a stock solution to a new molarity.
- Dilution just means adding more solvent.
- Dilution never changes the number of mols dissolved in the solution.
- just the volume of the solution around them.
- Molarity and volume change with dilution, but because the mols don't change...
- the ratio of volume to molarity is constant.
- What volume must you dilute 25 mL of $8.0 \mathrm{M} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ to make a 2.0 M solution?
$V_{A}=\frac{V_{B} N_{B}}{N_{A}}=\frac{8.0 \mathrm{M} .25 \mathrm{~mL}}{2.0 \mathrm{M}}=100 \mathrm{~mL}$
- How many mL of $6.0 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}$ do you need to make 200. mL of $2.0 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}$?
$V_{B}=\frac{V_{A} M_{A}}{M_{B}}=\frac{200 . \mathrm{mL} \cdot 2.0 \mathrm{Ml}}{6.0 M}=67 \mathrm{~mL}$

moles before $=$ moles after

molarity \times volume $=$ moles

Important:

- Don't confuse stoichiometry with dilution problems!

Stoichiometry

- Stoichiometry \& the mole ratio.
- A new conversion factor.
- Already in our tool box:
- Atomic Mass; Molar Mass; Avogadro's \# (chapter 2)
- Molecular Mass; Molecular Formula (chapter 3)
- The balanced equation.
- Example Stoichiometry Calculations
- mol \rightarrow mol calcs (2 steps)
- mass \rightarrow mol; $\mathrm{mol} \rightarrow$ mass calcs (3 steps)
- mass \rightarrow mass (4 steps)
- Liming Reagent Calculations
- What is a limiting reagent?
- Finding the liming reagent.
- Theoretical Yield \& Percent Yield.
- Excess Reagent
- Finding excess reagent remaining.

- Solution concentration.
- What concentration means?
- Measures of concentration.
- Molarity and others.

- Using molarity as a conversion factor.
- Solving for molarity.
- Solution techniques in the lab.
- Using volumetric glassware.
- Calculating concentrations.

Titration

$$
\mathrm{HCl}_{(\mathrm{aq})}+\mathrm{NaOH}_{(\mathrm{aq})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{NaCl}_{(\mathrm{aq})}
$$

- Titration is an analytic technique for determining the concentration in one solution by carefully adding a measured quantity of a known solution and observing a clear end point.
- The unknown is called an analyte.
- The standard solution is called a titrant or titrator.
- The end point is the point in the experiment where an indicator suggests the quantities of analyte and titrant are equal.
- The equivalence point is the point where they actually are.
- With a good chemical indicator, the two should be close, but your equivalence point is almost always reached before you see the end point.
- An indicator is a chemical added to the mixture that changes color close to the equivalence point.
- Finding the end point with a chemical indicator requires some skill.

Problem:
A 20.0 mL sample of $\mathrm{NaOH}_{(a q)}$ is titrated to an end point with 45.7 mL of $0.500 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ (aq), what is concentration of the NaOH solution?

Solution

$$
\begin{equation*}
2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O} \tag{1}
\end{equation*}
$$

(1) $1000 \mathrm{~mL}=1 \mathrm{~L}$
(2) $0.500 \mathrm{~mol}=1 \mathrm{~L}$
(3) $2 \mathrm{NaOL}=1 \mathrm{H}_{2} \mathrm{SO}_{4}$

Pant A

$$
45.7 \mathrm{~mL} \cdot \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \cdot \frac{0.500^{\mathrm{mol}}}{1 \mathrm{~L}} \cdot \frac{21 / 20 \mathrm{H}}{\mathrm{H}_{2} 504}=4.57 \times 10^{-2} \mathrm{~mol}
$$

Part B

$$
\begin{aligned}
& 20,0 \mathrm{~mL}=0.0200 \mathrm{~L} \\
& \frac{4.57 \times 10^{-2} \mathrm{~mol}}{0.0200 \mathrm{~L}}=2.29 \mathrm{M}
\end{aligned}
$$

Stoichiometry

- Stoichiometry \& the mole ratio.
- A new conversion factor.
- Already in our tool box:

- Atomic Mass; Molar Mass; Avogadro’s \# (chapter 2)
- Molecular Mass; Molecular Formula (chapter 3)
- The balanced equation.
- Example Stoichiometry Calculations
- mol \rightarrow mol calcs (2 steps)
- mass \rightarrow mol; $\mathrm{mol} \rightarrow$ mass calcs (3 steps)
- mass \rightarrow mass (4 steps)
- Liming Reagent Calculations
- What is a limiting reagent?
- Finding the liming reagent.
- Theoretical Yield \& Percent Yield.
- Excess Reagent
- Finding excess reagent remaining.

- Solution concentration.
- What concentration means?
- Measures of concentration.
- Molarity and others.

3.0 M 0.5 M

- Using molarity as a conversion factor.
- Solving for molarity.
- Solution techniques in the lab.
- Using volumetric glassware.

Dilution

- Calculating volumes
- Calculating concentrations.
- Titration
- A technique to find concentration.

Questions?

