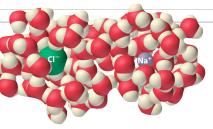


A closer look at mixtures. Solutions and reactions in solution.


version 1.5

© Nick DeMello, PhD. 2007-2015

Reactions in Solution

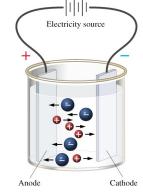
Solubility

Ch14

- Why Solids are Solid
- Making solutions
 - Molecular solvation
 - Ionic solvation Dissociation
- Electrolyte solutions
 - Electrolyte & Non-Electrolyte solns
 - Electrolyte strength
- Reactions in solution
 - ▶ Double Displacement: $AB + CD \rightleftharpoons AD + CB$
 - Equilibrium
 - Precipitation Reactions

Representing Aqueous Reactions

- Molecular solutions
- Ionic solutions
 - Molecular eqns
 - Complete Ionic eqns
 - Net lonic eqns

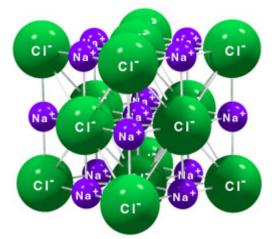

- Acid-Base Reactions
 - Neutralization; H₂O (l)
- Gas Evolution Reactions
 - ▶ H₂S (g), CO₂ (g), NH₃ (g), NH₄OH, H₂CO₃

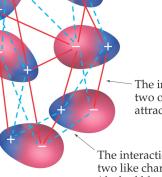
Oxidation & Reduction

- Single Displacement: $A + BC \rightleftharpoons B + AC$
 - How oxidation occurs
 - Oxidation Numbers
- Red-Ox Reactions
 - Half Reactions
 - Metal Activity
- Combustion Reactions

Solutions

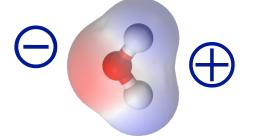
- Solutions are homogenous mixtures.
- Mixtures can be liquids, gas, or solid.
- We're going to discuss the structure of mixtures.
- How substances come into mixtures and how substances can be driven out of mixtures.
- How substances in mixtures interact.
 - ... and how that interaction facilitates chemical reaction between the mixtures components.

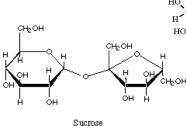

A solution is a homogenous mixture.


A solvent is the largest component of the mixture.

A solute is a smaller components of the mixture.

Why solids are solid.


- Intermolecular forces hold solids together.
 - It's usually about plus being attracted to minus (electrostatic attraction).
 - Molecular Solids are held together by many types of intermolecular forces.
 - The quick story is molecules have a negative end and a positive end.
 - > The negative end of one molecule sticks to the positive end of another.
 - We'll discuss the rest in Chapter 11.
 - Ionic Solids are held together by one type of intermolecular force.
 - It's a simpler story.
 - The cations stick to a bunch of anions.
 - Those anions stick to more cations.
 - The result is a big clump of particles.

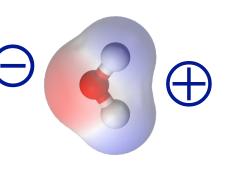

The interaction between any two opposite charges is attractive (solid red lines).

The interaction between any two like charges is repulsive (dashed blue lines).

Molecular Solids Dissolve in Water

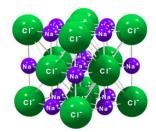
сн₂он | носн₂

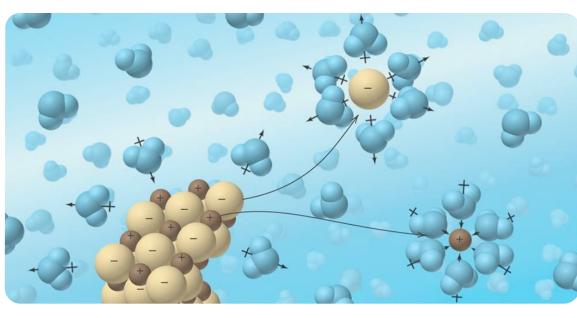
-CH₂OH

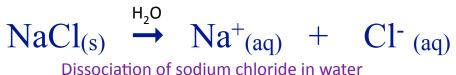

sucrose (glucose (αl-->2) fructose)

 $C_{12}H_{22}O_{11} \xrightarrow{(s)} \stackrel{H_2O}{\rightarrow} C_{12}H_{22}O_{11} \xrightarrow{(aq)}$

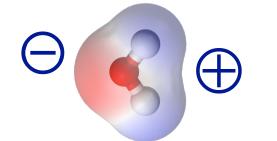
Sugar dissolving in water

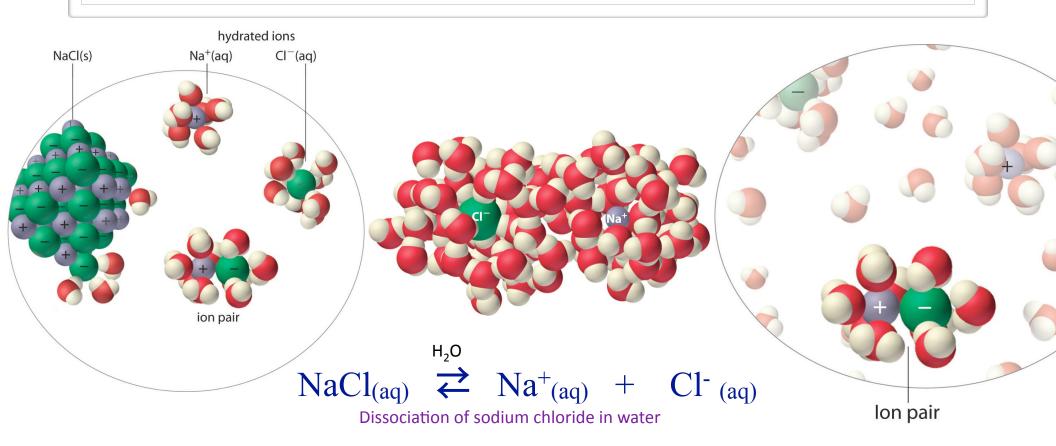

- Sugar dissolves in water.
- The molecules remain intact.
- Water molecules get in between sugar molecules.
- The result is a mixture of sugar and water.
- Mostly water.





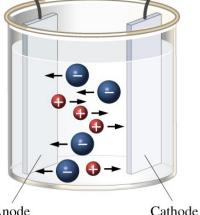
Ionic Solids Dissolve in Water




- Salt dissolves in water.
- The the ions separate.
- Water molecules get in between the ions.
- The result is a mixture of ions and water.
- Mostly water.
- Ions separating in solution is a process called dissociation.

Dissociation is often Reversible

- Dissolved ions in solution can find other dissolved ions.
- If the attraction between those ions is strong, they can re-associate.
- These dissolved ions form ion pairs.
- The ion pair is not a solid, it's still dissolved in solution.
- Ions that dissociate and re-associate in solution are a kind of reversible reaction.



Electrolytes & Acids in Solution

- Substances that dissociate in water are electrolytes.
- Those that do not dissociate in water are nonelectrolytes.
- Electrolytic solutions contain dissociated ions.
- Substances that release H⁺ are acids.
- Substances that accept H⁺ are bases.
- Equilibrium is the state of a reversible reaction where the forward and reverse reactions are happening at the same rate.
- At equilibrium the ratio of products to reactants is constant.
- Different materials will have different product to reactant ratios.
- Electrolytic solutions conduct electricity.
- The more ions, the better it conducts.
- Electrical conductivity can be used to test the equilibrium ratio of dissociated ions to associated acids and electrolytes.
- Acids and electrolytes that favor the dissociated state are called strong.
- Acids and electrolytes that favor the associated state in water are called weak.

Electrolytes: eq: HCI, KNO₃, NaCl, CH₃COOH, HF Acids: eq: HCI, CH₃COOH, HF, NH₄+ Bases: eg: CI ¹⁻, CH3COO ¹⁻, F ¹⁻, NH₃

> HCl (ag) \rightleftharpoons H⁺ (ag) + Cl¹⁻ (ag) $KNO_3 (ag) \rightleftharpoons K^+ (ag) + NO_3^{1-} (ag)$ NH_4^+ (ag) $\rightleftharpoons H^+$ (ag) + NH_3 (ag) NaCl (ag) \rightleftharpoons Na⁺ (ag) + Cl¹⁻ (ag) $CH_3COOH_{(aq)} \rightleftharpoons CHCOO^{1-}_{(aq)} + H^+_{(aq)}$ $HF_{(ag)} \rightleftharpoons H^+_{(ag)} + F^{1-}_{(ag)}$

Electricity source

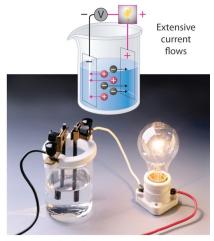
Anode

Electrolyte Strength

(a) Nonelectrolyte
Nonelectrolytes

- Molecular Substances
- Insoluble Ionic Salts

eg Sugar, AgCl, NO₂

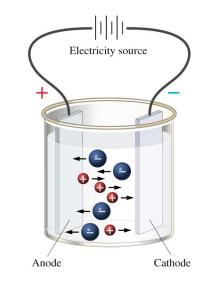

(b) Weak electrolyte

Weak Electrolytes

- Weak Acids
- Weak Bases
- Partially soluble Ionic Salts

eg HOAc, HF (aq)




(c) Strong electrolyte

Strong Electrolytes

- Strong Acids
- Strong Bases
- Soluble Ionic Salts

eg HCl (aq), NaCl, H₂SO₄

 $\mathsf{CH}_{3}\mathsf{COOH}_{(aq)} \rightleftharpoons \mathsf{CHCOO}_{(aq)} + \mathsf{H}_{(aq)}^{+}$

4 of 100 molecules dissociate

HCl (aq) \rightarrow H⁺ (aq) + Cl⁻ (aq) 100 of 100 dissociate

Reactions in Solution

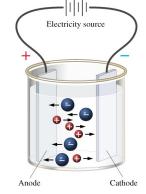
Solubility

Ch14

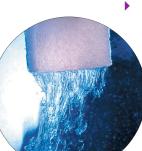
- Why Solids are Solid
- Making solutions
 - Molecular solvation
 - ▶ Ionic solvation Dissociation
- Electrolyte solutions
 - Electrolyte & Non-Electrolyte solns
 - Electrolyte strength
- Reactions in solution
- ▶ Double Displacement: AB + CD ≓ AD + CB
- ► Equilibrium
- Precipitation Reactions

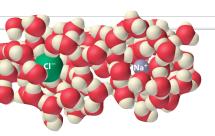
Representing Aqueous Reactions

- Molecular solutions
- Ionic solutions
 - Molecular eqns
 - Complete Ionic eqns
 - Net lonic eqns


- Acid-Base Reactions
 - Neutralization; H₂O (l)
- Gas Evolution Reactions
 - → H₂S (g), CO₂ (g), NH₃ (g), NH₄OH, H₂CO₃

Oxidation & Reduction


- Single Displacement: $A + BC \rightleftharpoons B + AC$
 - How oxidation occurs
 - Oxidation Numbers
- Red-Ox Reactions
 - Half Reactions
 - Metal Activity
- Combustion Reactions



Reactions in Solution

- If you dissolve more than one electrolyte in solution, you get a mixture of ions.
- The ions bump into each other and apart again, trading partners and just bouncing around the solution.
- That's not exciting.

 $\begin{array}{rcl} \mathsf{KI}_{(aq)} & \rightleftharpoons & \mathsf{K}^+_{(aq)} + & \mathsf{I}^{1-}_{(aq)} \\ \mathsf{NaNO}_{3\,(aq)} & \rightleftharpoons & \mathsf{Na}^+_{(aq)} + & \mathsf{NO}_3^{1-}_{(aq)} \end{array}$

 $\mathsf{KI}_{(aq)} + \mathsf{NaNO}_{3\,(aq)} \ \rightleftharpoons \ \mathsf{K}^{+}_{(aq)} + \ \mathsf{I}^{1-}_{(aq)} + \mathsf{Na}^{+}_{(aq)} + \mathsf{NO}_{3}^{1-}_{(aq)} \ \rightleftharpoons \ \mathsf{NaI}_{(aq)} + \mathsf{KNO}_{3\,(aq)}$

- But those ions sometimes pair up to form things that are non-electrolytes.
- When they do an irreversible reaction occurs.

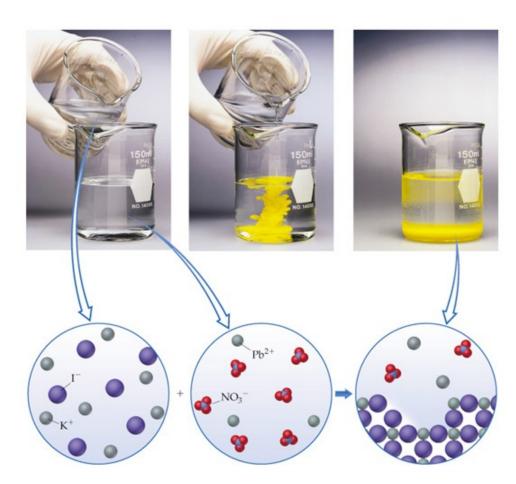
$$\begin{array}{rcl} Pb(NO_{3})_{2} &\rightleftharpoons Pb^{2+}{}_{(aq)} + & NO_{3}{}^{1-}{}_{(aq)} \\ KI_{(aq)} + Pb(NO_{3})_{2}{}_{(aq)} &\rightleftharpoons K^{+}{}_{(aq)} + & I^{1-}{}_{(aq)} + Pb^{2+}{}_{(aq)} + & NO_{3}{}^{1-}{}_{(aq)} \\ KI_{(aq)} + Pb(NO_{3})_{2}{}_{(aq)} &\rightleftharpoons K^{+}{}_{(aq)} + & I^{1-}{}_{(aq)} + Pb^{2+}{}_{(aq)} + & NO_{3}{}^{1-}{}_{(aq)} \rightarrow PbI_{2}{}_{(s)\downarrow} + & KNO_{3}{}_{(aq)} \end{array}$$

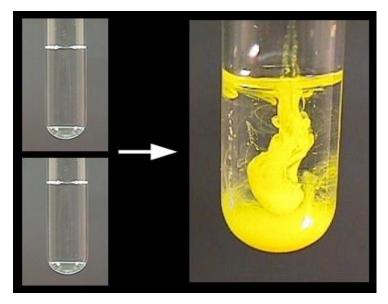
- This removes dissociated ions from equilibrium. Which pulls more substrate ions into the dissociated state.
- > And drives the reaction to complete formation of the non-electrolyte product.
- Possible non-electrolytes that can drive the reaction include:
 - insoluble solids (precipitates)
 - volatile gases (NH₃, CO₂, H₂S)
 - ▶ water (H₂O)

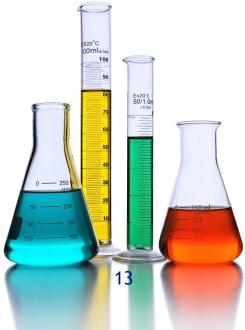
Double Displacement Reactions

• We call this class of reaction, where two electrolytes react in solution, a double displacement reaction.

 $AB + CD \rightarrow AD + CB$


It's only a reaction if a product is a non-electrolyte.


 $KI_{(s)} + NaNO_{3(s)} \rightleftharpoons KNO_{3(aq)} + NaI_{(aq)} \longleftarrow$ no reaction (write "N/R") $KI_{(s)} + Pb(NO_3)_{2(s)} \rightarrow PbI_{2(s)\downarrow} + KNO_{3(aq)} \longleftarrow a reaction because PbI_2$ is not soluble in water When there is a reaction you can show it three different ways: $KI_{(aq)} + Pb(NO_3)_{2(aq)} \rightarrow PbI_{2(s)\downarrow} + KNO_{3(aq)}$ Molecular Equation $K^{+}_{(aq)} + I_{(aq)} + Pb^{2+}_{(aq)} + NO_{3}^{1-}_{(aq)} \rightarrow PbI_{2}_{(s)\downarrow} + K^{+}_{(aq)} + NO_{3}^{1-}_{(aq)}$ Complete Ionic Equation Net Ionic Equation $I^{1-}_{(aq)} + Pb^{2+}_{(aq)} \rightarrow PbI_{2(s)\downarrow}$ Remove the spectator Ions When there is no reaction you show it this way: $KI_{(s)} + Pb(NO_3)_{2(s)} \rightarrow N/R$ How do you know if there's a reaction? (non-electrolytes) If one of the following products form, you know a reaction occurred:


(a) An insoluble solid (precipitate) (b) a Gas (c) Water

Solubility & Precipitation

- Different materials have different solubility properties.
- If an insoluble material forms in solution, it precipitates or falls out of solution.

Finding the Net Equation

Aqueous solutions of magnesium chloride and lead (II) acetate, are mixed, a bright yellow solid appears in the solution. What happened?

Magnesium Chloride_(aq) + Lead(II) Acetate_(aq) \rightarrow ?

 $AB + CD \rightarrow AD + CB$

 $MgCl_{2(aq)} + Pb(OAc)_{2(aq)} \rightleftharpoons Mg(OAc)_{2(aq)} + PbCl_{2(aq)}$

 $MgCl_{2(aq)} + Pb(OAC)_{2(aq)} \rightarrow Mg(OAC)_{2(aq)} + PbCl_{2(s)} \downarrow$ (Molecular Equation

What forms a precipitate?

Solubility Rules you are responsible for.	Soluble no precipitate	Insoluble forms precipitate	2+
Acetates (OAc ¹⁻ or CH3COO ¹⁻) Nitrates (NO ₃ 1-)	Always	Never	Hg ₂ ²⁺
Ammonium (NH4 ¹⁺) Alkali metal (Na ¹⁺ , Li ¹⁺ , K ¹⁺) Acids (the ones we learned)	Always	Never	mercury (I) i
Carbonates (CO ₃ ²⁻) Phosphates (PO ₄ ³⁻)	Never	Always	2+ Hg ²⁺
Halogens (Cl ¹⁻ , Br ¹⁻ , I ¹⁻ , F ¹⁻)	Usually	Except: Ag+, Hg $_2^{2+}$ or Pb $^{2+}$	mercury (II)
Sulfates (SO4 ²⁻)	Usually	Hg_2^{2+} or Pb ²⁺ Sr ²⁺ , Ba ²⁺	
Sulfides (S ²⁻) Hydroxy Salts (OH ¹⁻)	Except: Sr ²⁺ , Ba ²⁺ , Ca ²⁺	Usually	0
	you are responsible for. Acetates (OAc ¹⁻ or CH3COO ¹⁻) Nitrates (NO ₃ ¹⁻) Ammonium (NH ₄ ¹⁺) Alkali metal (Na ¹⁺ , Li ¹⁺ , K ¹⁺) Acids (the ones we learned) Carbonates (CO ₃ ²⁻) Phosphates (PO ₄ ³⁻) Halogens (Cl ¹⁻ , Br ¹⁻ , l ¹⁻ , F ¹⁻) Sulfates (SO ₄ ²⁻) Sulfides (S ²⁻)	responsible for. no precipitate Acetates (OAc ¹⁻ or CH3COO ¹⁻) Nitrates (NO3 ¹⁻) Always Ammonium (NH4 ¹⁺) Alkali metal (Na ¹⁺ , Li ¹⁺ , K ¹⁺) Always Acids (the ones we learned) Always Carbonates (CO3 ²⁻) Phosphates (PO4 ³⁻) Never Halogens (Cl ¹⁻ , Br ¹⁻ , I ¹⁻ , F ¹⁻) Usually Sulfates (SO4 ²⁻) Usually Sulfides (S ²⁻) Except: Sr ²⁺ , Ba ²⁺ ,	Productno precipitateforms precipitateAcetates (OAc^{1-} or $CH3COO^{1-}$)AlwaysNeverNitrates (NO_3^{1-})AlwaysNeverAmmonium (NH_4^{1+})AlwaysNeverAklali metal (Na^{1+}, Li^{1+}, K^{1+})AlwaysNeverAcids (the ones we learned)AlwaysNeverCarbonates (CO_3^{2-})NeverAlwaysPhosphates (PO_4^{3-})NeverAlwaysHalogens ($Cl^{1-}, Br^{1-}, l^{1-}, F^{1-}$)Usually $Hg2^{2+}$ or Pb^{2+} Sulfates (SO_4^{2-})Usually $Hg2^{2+}$ or Pb^{2+} Sulfides (S^{2-}) Sr^{2+}, Ba^{2+} Usually

If you remember 1-3 you'll be good 85% of the time If you remember 1-3 and 4 you'll be good 95% Remembering the exceptions isn't that hard

there's only six ions that cause exceptions
 and lead, mercury, and silver are the most commonly encountered ones.

Is it soluble?

KNO3 (NH₄)₃P MnCl₂ PbCl₂ HCIO3 CuCH₃CO₂ Ca(OAc)₂ X CaCO3

Always:	Acetates Nitrates
	Ammonium Alkali metal Acids
	Carbonates Phosphates
Usually:	
	Halogens
	Sulfates
	Junices

Ch14

Reactions in Solution

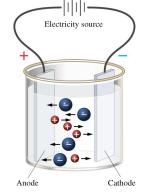
Solubility

- Why Solids are Solid
- Making solutions
 - Molecular solvation
 - ▶ Ionic solvation Dissociation
- Electrolyte solutions
 - Electrolyte & Non-Electrolyte solns
 - Electrolyte strength
- Reactions in solution
 - ▶ Double Displacement: AB + CD ≓ AD + CB
 - Equilibrium
 - Precipitation Reactions

Representing Aqueous Reactions

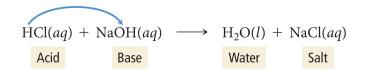
- Molecular solutions
- Ionic solutions
 - Molecular eqns
 - Complete Ionic eqns
 - Net lonic eqns

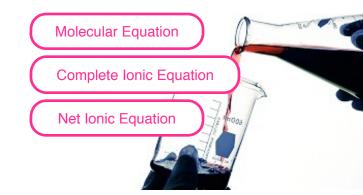
Other Reaction Types


- Acid-Base Reactions
 - Neutralization; H₂O (l)
- Gas Evolution Reactions
 - → H₂S (g), CO₂ (g), NH₃ (g), NH₄OH, H₂CO₃

Oxidation & Reduction

- Single Displacement: $A + BC \rightleftharpoons B + AC$
 - How oxidation occurs
 - Oxidation Numbers
- Red-Ox Reactions
 - Half Reactions
 - Metal Activity
- Combustion Reactions



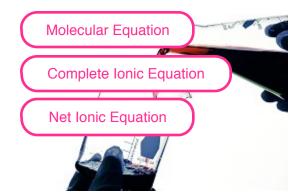

Acid-Base Reactions

- Acids and bases have multiple definitions.
- For now:
 - An acid is any substance which dissociates to release H+ (aq).
 - A base is any substance which reacts with H+ (aq).
 (You will explore other definitions in Chem 220.)
- Acid-base reactions are reactions between an acid and a base.
- Neutralization reactions are irreversible reactions between an acid and a base.
- Neutralization reactions produce water.
- The irreversible production of water can drive equilibrium forward, the same as precipitate formation.

HCl
$$_{(aq)}$$
 + NaOH $_{(aq)} \rightleftharpoons$ H⁺ $_{(aq)}$ + Cl⁻ $_{(aq)}$ + Na⁺ $_{(aq)}$ + OH⁻ $_{(aq)}$

$$\begin{aligned} & \text{HCl}_{(aq)} + \text{NaOH}_{(aq)} \rightarrow \text{H}_2\text{O}_{(l)} + \text{NaCl}_{(aq)} \\ & \text{H}^+_{(aq)} + \text{Cl}^-_{(aq)} + \text{Na}^+_{(aq)} + \text{OH}^-_{(aq)} \rightarrow \text{H}_2\text{O}_{(l)} + \text{Cl}^-_{(aq)} + \text{Na}^+_{(aq)} \\ & \text{H}^+_{(aq)} + \text{OH}^-_{(aq)} \rightarrow \text{H}_2\text{O}_{(l)} \end{aligned}$$

Gas Formation Reactions


- Volatile gases like CO_{2 (g)}, $H_2S_{(g)}$ and $NH_{3 (g)}$ that form immediately bubble off.
- The gases escape, their formation is irreversible.
- Sometimes the double displacement reaction forms an unstable compound that decomposes into the gases. Example:

 $H_2CO_3_{(aq)} \rightarrow H_2O_{(l)} + CO_2_{(g)} \qquad \qquad NH_4OH_{(aq)} \rightarrow H_2O_{(l)} + NH_3_{(g)}$

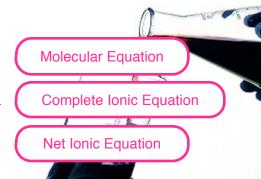
- ▶ If a double displacement reaction forms CO_{2 (g)}, H₂S (g), or NH_{3 (g)} gases this irreversible reaction will drive equilibrium forward.
- If a double displacement reaction forms H₂CO_{3 (aq)} or NH₄Cl (aq) these decompose to gases and drive equilibrium forward.
- Examples:

HCl
$$_{(aq)}$$
 + Na₂S $_{(aq)} \rightleftharpoons$ H⁺ $_{(aq)}$ + Cl⁻ $_{(aq)}$ + Na⁺ $_{(aq)}$ + S²⁻ $_{(aq)}$

$$\begin{aligned} & \text{HCl}_{(aq)} + \text{Na}_2\text{S}_{(aq)} \rightarrow \text{H}_2\text{S}_{(g)\uparrow} + \text{NaCl}_{(aq)} \\ & \text{H}^+_{(aq)} + \text{Cl}^-_{(aq)} + \text{Na}^+_{(aq)} + \text{S}^{2-}_{(aq)} \rightarrow \text{H}_2\text{S}_{(g)\uparrow} + \text{Cl}^-_{(aq)} + \text{Na}^+_{(aq)} \\ & \text{H}^+_{(aq)} + \text{S}^{2-}_{(aq)} \rightarrow \text{H}_2\text{S}_{(g)\uparrow} \end{aligned}$$

Gas Formation Reactions

- Volatile gases like $CO_{2 (g)}$, $H_2S_{(g)}$ and $NH_{3 (g)}$ that form immediately bubble off.
- The gases escape, their formation is irreversible.
- Sometimes the double displacement reaction forms an unstable compound that decomposes into the gases. Example:


 $H_2CO_3_{(aq)} \rightarrow H_2O_{(l)} + CO_2_{(g)} \qquad \qquad NH_4OH_{(aq)} \rightarrow H_2O_{(l)} + NH_3_{(g)}$

- ▶ If a double displacement reaction forms CO_{2 (g)}, H₂S (g), or NH_{3 (g)} gases this irreversible reaction will drive equilibrium forward.
- If a double displacement reaction forms H₂CO_{3 (aq)} or NH₄Cl (aq) these decompose to gases and drive equilibrium forward.

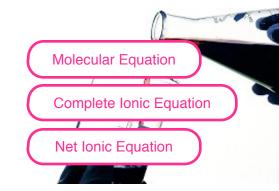
 $H_2SO_{4(aq)} + NaHCO_{3(aq)} \rightleftharpoons H^+_{(aq)} + SO_4^{2-}_{(aq)} + Na^+_{(aq)} + HCO_3^-_{(aq)}$ $H_2SO_{4(aq)} + NaHCO_{3(aq)} \rightarrow SO_4^{2-}_{(aq)} + Na^+_{(aq)} + H_2CO_{3(aq)}$

 $H_2SO_{4(aq)} + NaHCO_{3(aq)} \rightarrow Na_2CO_{3(aq)} + H_2CO_{3(aq)}$

 $H_{2}SO_{4(aq)} + NaHCO_{3(aq)} \rightarrow Na_{2}SO_{4(aq)} + H_{2}O_{(l)} + CO_{2(g)} \uparrow$ $H^{+}(aq) + SO_{4}^{2^{-}}(aq) + Na^{+}(aq) + HCO_{3}^{-}(aq) \rightarrow SO_{4}^{2^{-}}(aq) + Na^{+}(aq) + H_{2}O_{(l)} + CO_{2(g)} \uparrow$ $H^{+}(aq) + HCO_{3}^{-}(aq) \rightarrow H_{2}O_{(l)} + CO_{2(g)} \uparrow$

Gas Formation Reactions

- Volatile gases like $CO_{2 (g)}$, $H_2S_{(g)}$ and $NH_{3 (g)}$ that form immediately bubble off.
- The gases escape, their formation is irreversible.
- Sometimes the double displacement reaction forms an unstable compound that decomposes into the gases. Example:


 $H_2CO_3_{(aq)} \rightarrow H_2O_{(l)} + CO_2_{(g)} \qquad \qquad NH_4OH_{(aq)} \rightarrow H_2O_{(l)} + NH_3_{(g)}$

- ▶ If a double displacement reaction forms CO_{2 (g)}, H₂S (g), or NH_{3 (g)} gases this irreversible reaction will drive equilibrium forward.
- If a double displacement reaction forms H₂CO_{3 (aq)} or NH₄Cl (aq) these decompose to gases and drive equilibrium forward.

 $NaOH_{(aq)} + NH_4Cl_{(aq)} \rightleftharpoons Na^+_{(aq)} + OH^-_{(aq)} + NH_4^+_{(aq)} + Cl^-_{(aq)}$ $NaOH_{(aq)} + NH_4Cl_{(aq)} \rightarrow Na^+_{(aq)} + Cl^-_{(aq)} + NH_4OH_{(aq)}$

 $NaOH_{(aq)} + NH_4Cl_{(aq)} \rightarrow NaCl + NH_4OH_{(aq)}$

$$\begin{split} & \mathsf{NaOH}_{(\mathrm{aq})} + \mathsf{NH}_4\mathsf{Cl}_{(\mathrm{aq})} \xrightarrow{} \mathsf{NaCl}_{(\mathrm{aq})} + \mathsf{H}_2\mathsf{O}_{(\mathrm{l})} + \mathsf{NH}_{3(\mathrm{g})} \uparrow \\ & \mathsf{Na}^+_{(\mathrm{aq})} + \mathsf{OH}^-_{(\mathrm{aq})} + \mathsf{NH}_4^+_{(\mathrm{aq})} + \mathsf{Cl}^-_{(\mathrm{aq})} \xrightarrow{} \mathsf{Na}^+_{(\mathrm{aq})} + \mathsf{Cl}^-_{(\mathrm{aq})} + \mathsf{H}_2\mathsf{O}_{(\mathrm{l})} + \mathsf{NH}_{3(\mathrm{g})} \uparrow \\ & \mathsf{OH}^-_{(\mathrm{aq})} + \mathsf{NH}_4^+_{(\mathrm{aq})} \xrightarrow{} \mathsf{H}_2\mathsf{O}_{(\mathrm{l})} + \mathsf{NH}_{3(\mathrm{g})} \uparrow \end{split}$$

Double Displacement Reactions

- If I mix two electrolytes (AB & CD), I can look at the two possible double displacement products (AD & CB) to predict if a reaction will occur.
- > If either of the two products forms irreversibly, a reaction will occur.
 - Irreversible reactions include precipitation formation, neutralization and gas formation.
- For each pair of possible products below, did a reaction occur?

$AB + CD \rightarrow AD + CB$

 $(NH_4)_2SO_4 + H_2CO_3$

 $Fe(OAc)_3 + Mn(NO_3)_2$

 $CO_2 + MnCl_2$

 $H_2SO_4 + Hg_2(NO_3)_2$

 $C_2H_4O + AgCl \qquad HBrO_3 + H_2S$

 $H_2O + KBr$

NH₄OH + MgCO₃

Predict the products...

Always:

Acetates

Nitrates

Acids

Ammonium Alkali metal

Carbonates

Phosphates

Halogens

Sulfates

Sulfides

Hydroxy Salts

 $NaCl + Mn(NO_3)_3 \rightarrow N/R$ Usually: $NaCl + AqNO_3 \rightarrow AgCl_{(s)} + NaNO_{3}_{(aq)}$ $K_2CO_3 + Ca(NO_3)_2 \rightarrow KNO_3_{(aq)} + CaCO_3_{(s)}$ N/R $K_2CO_3 + NaCl \rightarrow$ $KBr_{(aq)} + H_2O_{(l)} + CO_{2(q)}$ $K_2CO_3 + HBr \rightarrow$ $FeCl_3 + Hg_2(OAc)_2 \rightarrow Hg_2Cl_2 (s) \ddagger Fe(OAc)_3 (aq)$ $TiCl_4 + NH_4NO_3 \rightarrow$ N/R $NH_4OH + H_2SO_4 \rightarrow$ $(NH_4)_2SO_4 (aq) + H_2O (l)$

Reactions in Solution

Solubility

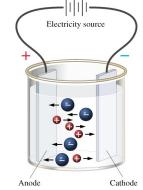
Ch14

- Why Solids are Solid
- Making solutions
 - Molecular solvation
 - ▶ Ionic solvation Dissociation
- Electrolyte solutions
 - Electrolyte & Non-Electrolyte solns
 - Electrolyte strength
- Reactions in solution
 - ▶ Double Displacement: AB + CD ≓ AD + CB
 - ► Equilibrium
 - Precipitation Reactions

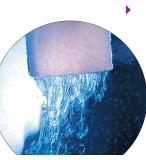
Representing Aqueous Reactions

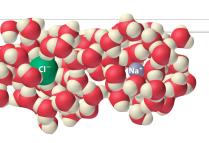
- Molecular solutions
- Ionic solutions
 - Molecular eqns
 - Complete Ionic eqns
 - Net lonic eqns

Other Reaction Types


- Acid-Base Reactions
 - Neutralization; H₂O (l)
- Gas Evolution Reactions
 - ▶ H₂S (g), CO₂ (g), NH₃ (g), NH₄OH, H₂CO₃

Oxidation & Reduction

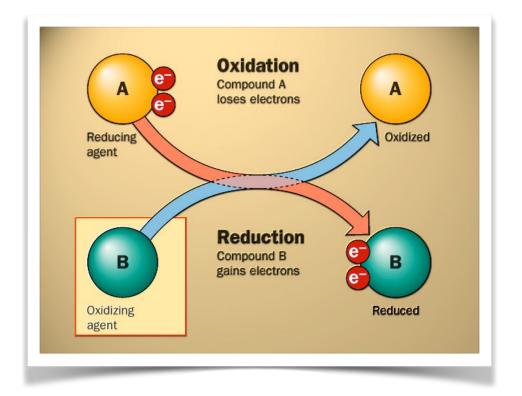

- Single Displacement: $A + BC \rightleftharpoons B + AC$
 - How oxidation occurs
 - Oxidation Numbers
- Red-Ox Reactions
 - Half Reactions
 - Metal Activity
- Combustion Reactions



Oxidation & Reduction

• If an atom gains electrons, it's said to be reduced.

Example: Fe $^{3+} \rightarrow$ Fe 0

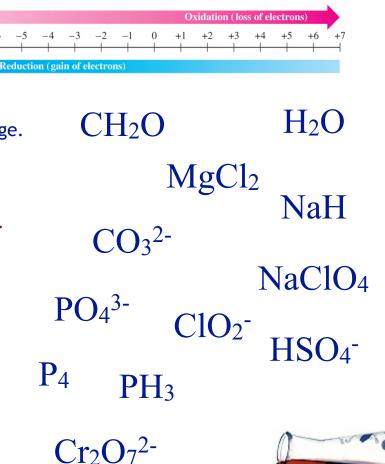

- $Cl^{0} \rightarrow Cl^{1-}$
- If an atom looses electrons, it's said to be oxidized.

Example Fe⁰ \rightarrow Fe³⁺ Cl¹⁻ \rightarrow Cl⁰

• Chemical reactions where electrons are transferred from one atom to another are called oxidation-reduction reactions.

Example: Fe + HCl \rightarrow FeCl₃ + H₂

- It can be tricky to figure out which atoms gained or lost electrons in a reaction.
- In the above reaction:
 - Iron was oxidized.
 - Chlorine neither gained nor lost electrons.
 - Hydrogen was reduced.
- To help us explore oxidation-reduction reactions we assign oxidation numbers to each atom in the solution.



Oxidation Numbers

Oxidation

number

- Every atom in solution has an oxidation number.
 - If the number goes up, the species has been oxidized.
 - If the number goes down it's been reduced.
- Oxidation numbers can be positive or negative.
- The sum of the oxidation numbers in a molecule or ion equals it's charge.
- Finding oxidation Numbers:
 - Elements in their natural state are always oxidation number 0.
 - Fe, Au, Ne, H₂, Cl₂, P₄, S₈ are all oxidation number 0.
 - Monatomic lons have an oxidation number equal to their charge.
 - ▶ Na+ is 1, Mg²⁺ is 2, Ca²⁺ is 2, S²⁻ is -2, N³⁻ is -3
 - Elements in a compound or molecule...
 - Fluorine is the king. He is always oxidation number -1.
 - Hydrogen is the wild card. He's usually:
 - +1 when bonded to non-metals
 - -1 when bonded to metals
 - Oxygen is next. Unless trumped by fluorine, oxygen is usually -2 (exception: in peroxides he's -1)
 - Other elements get priority in order of their proximity to Fluorine:
 - elements in row 7A get -1, 6A get -2, 5A get -3
 - It's like musical chairs, the last element get's what ever is left over.

Chlorine's oxidation number?

O Cl_2 -1 NaCl (Na⁺ Cl^{1-}) +1 ClO¹⁻ +5 HClO₃ +7 ClOF₅ +9 Cl₂O₉

Identifying Red-Ox Reaction

- When an atoms oxidation number goes up in a reaction, it's been oxidized (lost electrons).
- When an atoms oxidation number goes down in a reaction, it's been reduced (gained electrons).
- For underlined atom in each reaction below, determine if it's been oxidized, reduced, or neither.

Iron rusting to Iron (III) oxide. Oxidized

$$2 \operatorname{AgCl}_{(s)} + \operatorname{H}_{2}_{(g)} \rightarrow 2 \operatorname{H}^{1+}_{(aq)} + 2 \operatorname{Ag}_{(s)} + 2 \operatorname{Cl}^{1-}_{(aq)}$$
 Oxidized
 $\operatorname{MnO_4^{1-}}_{(aq)} + |^{1-}_{(aq)} \rightarrow \operatorname{Mn}^{2+}_{(aq)} + |_{2}_{(s)}$ Reduced
 $\operatorname{Na_3PO_4}_{(aq)} + \operatorname{H_2SO_4}_{(aq)} \rightarrow \operatorname{H_3PO_4}_{(aq)} + \operatorname{Na_2SO_4}_{(aq)}$ Neither
Precipitating gold metal from gold ions in sea water. Reduced

Oxidation-Reduction Reactions

- Atoms that gain electrons (negative charges) are reduced.
- Atoms that loose electrons are oxidized.
- Electrons always end up somewhere. If something in the reaction is getting oxidized, something else is getting reduced.
- Red-ox processes are *not* an equilibrium processes
 someone wins; someone looses; end of story. No trade-backs.
- You can drive equilibrium with red-ox processes, just like you drive it with other precipitation, gas formation or water formation.
- Metals can be oxidized by acids and salts (rust is an example).
- Metal oxidation often occurs by a single displacement mechanism.

$$A + BC \rightarrow AC + B$$

$$Zn_{(s)} + HBr_{(aq)} \rightarrow ZnBr_{2(aq)} + H_{2(g)}$$

$$Zn_{(s)} + H^{1+}_{(aq)} + Br^{1-}_{(aq)} \rightarrow Zn^{2+}_{(aq)} + Br^{1-}_{(aq)} + H_{2(g)}$$

oxidation number

0 +1 -1 +2 -1 0 Zn is oxidized (0 goes to +2) Hydrogen is Reduced (+1 goes to 0) Bromine is neither.

Oxidation-Reduction Reactions

- Atoms that gain electrons (negative charges) are reduced.
- Atoms that loose electrons are oxidized.
- Electrons always end up somewhere. If something in the reaction is getting oxidized, something else is getting reduced.
- Red-ox processes are *not* an equilibrium processes
 someone wins; someone looses; end of story. No trade-backs.
- You can drive equilibrium with red-ox processes, just like you drive it with other precipitation, gas formation or water formation.
- Metals can be oxidized by acids and salts (rust is an example).
- Metal oxidation often occurs by a single displacement mechanism.

 $A + BC \rightarrow AC + B$ $Zn_{(s)} + HBr_{(aq)} \rightarrow ZnBr_{2(aq)} + H_{2(g)}$ $Mn_{(s)} + Pb(NO_3)_{2(aq)} \rightarrow Mn(NO_3)_{2(aq)} + Pb_{(s)}$ $Cu_{(s)} + Pb(NO_3)_{2(aq)} \rightarrow N/R$

If the reaction will occur?

Oxidation-Reduction Half Reactions

How do we know if the reaction happens? Look at the complete ionic equation.

Remove the spectator ions to see the net ionic equation.

Ρ

$$Mn_{(s)} + Pb^{2+} \rightarrow Mn^{2+} + Pb_{(s)}$$

There are two half reactions which make up the net ionic equation.

$$Mn_{(s)} \rightarrow Mn^{2+} + 2e^{-}$$

$$b^{2+} + 2e^{-} \rightarrow Pb_{(s)}$$
Half Reaction Equations

- The two half reactions show that we're looking at a competition for electrons. It's basically a tug of war.
- You can turn around one equation to compare them side to side. We need to decide who's gonna win the fight over those two electrons.

$$Mn^{2+} + 2e^{-} \rightarrow Mn_{(s)}$$
$$Pb^{2+} + 2e^{-} \rightarrow Pb_{(s)}$$

• We could look up numbers for whose is better at holding electrons, or we could just reference a list of "who beat's who" - the activity series.

Complete Ionic Equation

Net Ionic Equation

The Activity Series

Metal	Oxidation Reaction
Lithium	$Li(s) \longrightarrow Li^+(aq) + e^-$
Potassium	$K(s) \longrightarrow K^+(aq) + e^- \qquad \frown \qquad \frown$
Barium	$Ba(s) \longrightarrow Ba^{2+}(aq) + 2e^{-}$
Calcium	$Ca(s) \longrightarrow Ca^{2+}(aq) + 2e^{-}$
Sodium	$Na(s) \longrightarrow Na^+(aq) + e^-$
Magnesium	$Mg(s) \longrightarrow Mg^{2+}(aq) + 2e^{-}$
Aluminum	$Al(s) \longrightarrow Al^{3+}(aq) + 3e^{-}$
Manganese	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Zinc	$Zn(s) \longrightarrow Zn^{2+}(aq) + 2e^{-}$
Chromium	$Cr(s) \longrightarrow Cr^{3+}(aq) + 3e^{-}$
Iron	$Fe(s) \longrightarrow Fe^{2+}(aq) + 2e^{-}$
Cobalt	$Co(s) \longrightarrow Co^{2+}(aq) + 2e^{-}$
Nickel	$Ni(s) \longrightarrow Ni^{2+}(aq) + 2e^{-1}$
Tin	$Sn(s) \longrightarrow Sn^{2+}(aq) + 2e^{-}$
Lead	$Pb(s) \longrightarrow Pb^{2+}(aq) + 2e^{-}$
Hydrogen	$H_2(g) \longrightarrow 2H^+(aq) + 2e^-$
Copper	$Cu(s) \longrightarrow Cu^{2+}(aq) + 2e^{-}$
Silver	$Ag(s) \longrightarrow Ag^+(aq) + e^-$
Mercury	$Hg(l) \longrightarrow Hg^{2+}(aq) + 2e^{-}$
Platinum	$Pt(s) \longrightarrow Pt^{2+}(aq) + 2e^{-}$
Gold	$Au(s) \longrightarrow Au^{3+}(aq) + 3e^{-}$

- Which metal (oxidation zero) is more "active"?
- We look at the half reactions.
- An atom of an element in the activity series will displace an atom of an element below it from one of its compounds.

The Activity Series

Metals
K
Ca
Na
Mg
AĬ
Zn
Fe
Ni
Sn
Pb
Η
Cu
Ag
Au

Grouped Metals K Ca Na Mg Ga Al Zn Fe Co Ni **Sn Pb** H Cu Ag Au

- Which metal (oxidation zero) is more "active"?
- An atom of an element in the activity series will displace an atom of an element below it from one of its compounds.

Metal (cation) Activity Series

	5																Noble gases
н	2A			-	M	atale						3A	4 A	5A	6A	7 A	He
3 Li	4 Be		Metals Metalloids								C	5 B	6 C	7 N	8 0	9 F	10 Ne
11 Na	12 Mg		Nonmetals									13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 4	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Te	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 Cs	56 Ba	57 La*	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89 Ac†	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	6						

*	58 Ce	59 Pr	1000			63 Eu		100.00		70 Yb	71 Lu
Ť		91 Pa	92 U	93 Np	200	95 Am			100 Fm	102 No	103 Lr

Oxidation & Reduction

- How do we know which metal gives up it's electrons? Check "activity." The more active ion is the one more likely to turn into a cation (give up it's electrons).
- Which is more active (more likely to loose it's electrons)?

Sodium or Iron?

Al or Co?

H₂ or Mg?

Hydrogen or Gold?

Sodium or Zinc?

Pb or Cu?

Nickel or Calcium?

	1A 1														
1	1 H	2A 2											3A 13	4A 14	5A 15
2	3 Li	4 Be											5 B	6 C	7 N
3	11 Na	12 Mg	3B 3	${}^{4\mathrm{B}}_{4}$	5B 5	6B 6	7B 7	8	8B 9	10	1B 11	2B 12	13 Al	14 Si	15 P
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 St
6	55 Cs	56 Ba	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi
7	87 Fr	88 Ra	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112	113	114	11
		Metals		57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 E1
		Metalloids		89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	10 Fn
		Nonn	netals												

Oxidation & Reduction

3B

3

21 Sc

39

Υ

71

Lu

103

Lr

4B

4

22 Ti

40

Zr

72

Hf

104

Rf

57

La

89 Ac

6B

7B 7

- How do we know which metal gives up it's electrons? Check "activity." The more active ion is the one more likely to turn into a cation (give up it's electrons).
- Which reactions will occur?

 $A + BC \rightarrow AC + B$ 1A1 1 **H** 2A 2 $Na_{(s)} + FeBr_{3(aq)} \rightarrow ?$ 4 3 Li Be 12 11 Na more active than Fe? Yes. Mg Na 20 Ca 19 **K** $Na_{(s)} + FeBr_{3(aq)} \rightarrow Fe_{(s)} + NaBr_{(aq)}$ 37 38 5 Rb Sr 55 56 Cs Ba 87 88 7 Fr Ra $Fe_{(s)} + Zn(ClO_3)_{2(aq)} \rightarrow ?$ Metals Fe more active than Zn? No. Metalloids Nonmetals $Fe_{(s)} + Zn(ClO_3)_{2(aq)} \rightarrow N/R$ $Sn_{(s)} + HNO_{3(aq)} \rightarrow ?$

Sn more active than H? Yes.

 $Sn_{(s)} + HNO_{3(aq)} \rightarrow H_{2(g)\uparrow} + Sn(NO_3)_{4(aq)}$

23	24	25	26	27	28	29	30	31	32	33		
V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As		
41	42	43	44	45	46	47	48	49	50	51		
Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	St		
73	74	75	76	77	78	79	80	81	82	83		
Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi		
105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112	113	114	11		
50	50	(0)	(1	()	(2)	64	< F			(6		
58	59	60	61	62	63	64	65	66	67	68		
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	E1		
90	91	92	93	94	95	96	97	98	99	10		
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fn		

3A

13 **Al**

2B 12

1B

11

10

4A

14

С

14

5A

Reactions in Solution

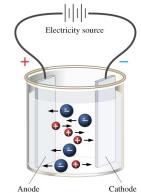
Solubility

Ch14

- Why Solids are Solid
- Making solutions
 - Molecular solvation
 - ▶ Ionic solvation Dissociation
- Electrolyte solutions
 - Electrolyte & Non-Electrolyte solns
 - Electrolyte strength
- Reactions in solution
 - ▶ Double Displacement: AB + CD ≓ AD + CB
 - ► Equilibrium
 - Precipitation Reactions

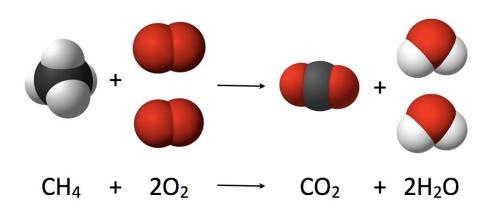
Representing Aqueous Reactions

- Molecular solutions
- Ionic solutions
 - Molecular eqns
 - Complete Ionic eqns
 - Net lonic eqns


- Acid-Base Reactions
 - Neutralization; H₂O (l)
- Gas Evolution Reactions
 - → H₂S (g), CO₂ (g), NH₃ (g), NH₄OH, H₂CO₃

Oxidation & Reduction

- Single Displacement: $A + BC \rightleftharpoons B + AC$
 - How oxidation occurs
 - Oxidation Numbers
- Red-Ox Reactions
 - Half Reactions
 - Metal Activity



Combustion Reactions

- Burning something is causing it to combust.
- Combustion reactions are reacting any substance with oxygen to form the most stable binary compounds of it's elements and oxygen.
- The most common products are CO₂ and H₂O.
 Other common products are NO₂ and P₂O₅.
- Combustion reactions are red-ox reactions, in which oxygen is reduced.
- The driving force in combustion reactions is oxygens fierce demand for electrons. Harnessing that property of oxygen is what gave us the internal combustion engine and is at the heart of most of fuels humans use.

$X + O_2 \rightarrow H_2O + CO_2 + NO_2 + P_2O_5 + \dots$

Reaction Types

Considering...

- Kinetics (what could be formed?)
 - Double Displacement
 - Single Displacement
- Driving force (will it happen?)
 - Precipitation Reactions
 - Acid Base Reactions
 - Gas Evolution Reactions
 - Reduction-Oxidation Reactions
 - Metal Activity
 - Combustion

... you can predict if two substances will react and what products it will likely produce.

$AB + CD \rightarrow AD + CB$

$A + BC \rightarrow B + AC$

Reactions in Solution

Solubility

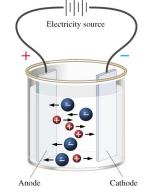
Ch14

- Why Solids are Solid
- Making solutions
 - Molecular solvation
 - ▶ Ionic solvation Dissociation
- Electrolyte solutions
 - Electrolyte & Non-Electrolyte solns
 - Electrolyte strength
- Reactions in solution
 - ▶ Double Displacement: AB + CD ≓ AD + CB
 - Equilibrium
 - Precipitation Reactions

Representing Aqueous Reactions

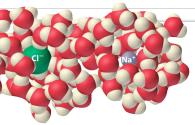
- Molecular solutions
- Ionic solutions
 - Molecular eqns
 - Complete Ionic eqns
 - Net lonic eqns

Other Reaction Types


- Acid-Base Reactions
 - Neutralization; H₂O (l)
- Gas Evolution Reactions
 - → H₂S (g), CO₂ (g), NH₃ (g), NH₄OH, H₂CO₃

Oxidation & Reduction

- Single Displacement: $A + BC \rightleftharpoons B + AC$
 - How oxidation occurs
 - Oxidation Numbers
- Red-Ox Reactions
 - Half Reactions
 - Metal Activity
- Combustion Reactions



Questions?

