

Na atom Cl atom

Na⁺ Cl⁻ sodium chloride

Part B: Ionic Compounds

Sodium chloride

Chemical Compound

Sodium chloride / soodiam 'kloraɪd/, also known as salt, common salt, table salt or halite, is an ionic compound with the chemical formula NaCl, representing a 1:1 ratio of sodium and chloride ions. Wikipedia

Brand names: Cleanoz, Na-zone Boiling point: 2,575°F (1,413°C) Density: 2.17 g/cm³ Formula: NaCl Molar mass: 58.44 g/mol IUPAC ID: Sodium chloride Melting point: 1,474°F (801°C)

- A binary compound of a metal and a non-metal forms ions not a molecule.
- The ions collect into a huge ionic mass.
- We still write the formula as the ratio of the two ions in the compound (e.g. LiCl, MgCl₂, Li₃N, etc)
- We name binary compounds by just writing the names of the two ions:

Lithium ion + chloride ion = lithium chloride

Part C: Ionic Compounds w/ Transition Metals

Cr Fe Co +2/+3

Cu Hg +1/+2

Sn Pb Mn +2/+4

Chromium	Cr ²⁺	Chromous ion	Chromium (II) ion		
	Cr ³⁺	Chrom <mark>ic</mark> ion	Chromium (III) ion		
Iron	Fe ²⁺	Ferrous ion	lron (II) lon		
	Fe ³⁺	Ferr <mark>ic</mark> ion	lron (III) lon		
Cobalt	Co ²⁺	Cobaltous ion	Cobalt (II) ion		
	Co ³⁺	Cobalt <mark>ic</mark> ion	Cobalt (III) ion		
Copper	Cu⁺	Cuprous ion	Copper (I) Ion		
	Cu ²⁺	Cupr <mark>ic</mark> ion	Copper (II) Ion		
Mercury	Hg ₂ ²⁺	Mercurous ion	Mercury (I) Ion		
	Hg ²⁺	Mercur <mark>ic</mark> ion	Mercury (II) Ion		
Tin	Sn ²⁺	Stann <mark>ous</mark> ion	Tin (II) ion		
	Sn ⁴⁺	Stann <mark>ic</mark> ion	Tin (IV) ion		
Lead	Pb ²⁺	Plumb <mark>ous</mark> ion	Lead (II) ion		
	Pb4+	Plumb <mark>ic</mark> ion	Lead (IV) ion		
Manganese	Mn ²⁺	Mangan <mark>ous</mark> ion	Manganese (II) Ion		
	Mn ⁴⁺	Mangan <mark>ic</mark> ion	Manganese (IV) Ion		

Iron(III) chloride

Chemical Compound

Iron(III) chloride, also called ferric chloride, is an industrial scale commodity chemical compound, with the formula FeCl, and with iron in the +3 oxidation state. Wikipedia

Formula: FeCl₃

Molar mass: 162.2 g/mol Density: 2.90 g/cm3 Melting point: 582.8°F (306°C) Boiling point: 599°F (315°C) Soluble in: Properties of water IUPAC ID: Iron trichloride, Iron(III) chloride

Part D: Ionic Compounds w/ Oxy-Ions

Sodium carbonate

Sodium carbonate, Na₂CO₃, is the water-soluble sodium salt of carbonic acid. It most commonly occurs as a crystalline heptahydrate, which readily effloresces to form a white powder, the monohydrate. Wikipedia

Molar mass: 105.9888 g/mol Formula: Na₂CO₃ Melting point: 1,564°F (851°C) Density: 2.54 g/cm³ Boiling point: 2,912°F (1,600°C) Soluble in: Properties of water

Part D: Ior	nic (The	Compounds w e Element at the center of the ion	y Oxy-Ions Chg the element prefers	Chg of the ion	3		3-
	S	Р	-3	-3	4 oxygens	PO ₄ ³⁻	Phosphate ion
	3/4 ion	S	-2	-2	4 oxygens 3 oxygens	SO ₄ ²⁻ SO ₃ ²⁻	Sulfate ion Sulfite ion
		С	-4/+4	-2	3 oxygens 2 oxygens	CO ₃ ²⁻ CO ₂ ²⁻	Carbonate ion Carbonite ion
	3 ions	Ν	-3	-1	3 oxygens 2 oxygens	NO3 ¹⁻ NO2 ¹⁻	Nitr <mark>ate</mark> ion Nitr <mark>ite</mark> ion
	2/3	Cl, Br, I	-1	-1	4 oxygens 3 oxygens	BrO ₄ 1- BrO ₃ 1-	<i>Per</i> bromate ion Bromate ion
(re	Think of member: I "at	a party, and e more". The	ate ion	2 oxygens 1 oxygen	BrO ₂ ¹⁻ BrO ₁ ¹⁻	Bromite ion Hypobromite ion
has more oxygens.				NH4 ¹⁺ OH ¹⁻ OAc ¹⁻ CN ¹⁻	(CH ₃ CO ₂ ¹⁻)	Ammonium ion Hydroxide ion Acetate Ion Cyanide Ion	

6

Part E: Molecular Compounds

10 = deca

5 = penta

Part E: Molecular Compounds

- Lewis structures are created by pooling all the electrons in a compound or ion and assigning them to bonds (shared electrons) and lone pairs (electrons dedicated to one atom).
- Use these five steps:
 - Step 1: Take Stock
 - Step 2: Draw a Simple Skeleton
 - Step 3: Fill in the Octets
 - Step 4: Push LP's into Bonds
 - (if needed)

CH20

Step 5: Show any Charge

24 0 No Chere 1Ze-3 bongs Ge a d 8 be 3 1p's Ge 0

1C

4e

Zer

60

0e'

14

Part F: Molecular Shape

- Lewis structures are created by pooling all the electrons in a compound or ion and assigning them to bonds (shared electrons) and lone pairs (electrons dedicated to one atom).
- Use these five steps:
 - Step 1: Take Stock
 - Step 2: Draw a Simple Skeleton
 - Step 3: Fill in the Octets
 - Step 4: Push LP's into Bonds
 - (if needed)

CH20

• Step 5: Show any Charge

We will discuss how to determine molecular shape and polarity in lecture today.

2.

Questions?

