Exp 08: Acids

Exp 08: Acids

Acids

Arrhenius acids

- produce hydrogen ions $\left(\mathrm{H}^{+}\right)$ions when they dissolve in water

$$
\mathrm{HCl}(g) \xrightarrow{\mathrm{H}_{2} \mathrm{O}(t)} \mathrm{H}^{+}(a q)+\mathrm{Cl}^{-}(a q)
$$

- are also electrolytes because they produce H^{+}in water
- have a sour taste
- turn blue litmus red
- corrode some metals

Exp 08: Acids

The pH Scale

Acidic solution	$\mathrm{pH}<7.0$	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>1 \times 10^{-7} \mathrm{M}$	
Neutral solution	$\mathrm{pH}=7.0$	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1 \times 10^{-7} \mathrm{M}$	$\left[\mathrm{H}^{+}\right]=10-\mathrm{pH}$
Basic solution	$\mathrm{pH}>7.0$	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<1 \times 10^{-7} \mathrm{M}$	
			$\mathbf{p H}=-\mathbf{l o g}\left[\mathrm{H}^{+}\right]$

Exp 08: Acids

The pH Scale

pH	Hydronium ion concentration $(\mathrm{moles} / \mathrm{L})$	
1	.1	$\left(1 \times 10^{-1}\right)$
2	.01	$\left(1 \times 10^{-2}\right)$
3	.001	$\left(1 \times 10^{-3}\right)$
4	.0001	$\left(1 \times 10^{-4}\right)$
5	.00001	$\left(1 \times 10^{-5}\right)$
6	.000001	$\left(1 \times 10^{-6}\right)$
7	.0000001	$\left(1 \times 10^{-7}\right)$
8	.00000001	$\left(1 \times 10^{-8}\right)$
10	.000000001	$\left(1 \times 10^{-9}\right)$
11	.0000000001	$\left(1 \times 10^{-10}\right)$
12	.00000000001	$\left(1 \times 10^{-11}\right)$
13	.000000000001	$\left(1 \times 10^{-12}\right)$
14	.0000000000001	$\left(1 \times 10^{-13}\right)$
	.0000000000001	$\left(1 \times 10^{-14}\right)$

$$
\left[\mathrm{H}^{+}\right]=10-\mathrm{pH}
$$

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
$$

Exp 08: Acids

Solutions for A / B

- 0.1 M NaCl
- 0.1 M HCl
- 0.1 M acetic acid
- 0.1 M NaOH
- $0.1 \mathrm{M} \mathrm{NH}_{3}$

Solutions for C (5 ml each)

- Deionized Water
- 0.1 M NaCl
- 0.1 M buffer (high pH)
- 0.1 M buffer (low pH)

Part A: pH Indicators
Use pH paper to estimate the pH of each solution.

Part B: Measuring pH
Use the pH meter to measure and record the pH of each solution.

Part C: pH Buffers
Observe what happens to the pH of each solution when you add small amounts of acid and base.

Exp 08: Acids

Solutions for A / B

- 0.1 M NaCl
- 0.1 M HCl
- 0.1 M acetic acid
- 0.1 M NaOH
- $0.1 \mathrm{M} \mathrm{NH}_{3}$

Part A: pH Indicators
Use pH paper to estimate the pH of each solution.

Exp 08: Acids

Solutions for A / B

- 0.1 M NaCl
- 0.1 M HCl
- 0.1 M acetic acid
- 0.1 M NaOH

Part B: Measuring pH
Use the pH meter to measure and record the pH of each solution.

Exp 08: Acids

Solutions for A / B

- 0.1 M NaCl
- 0.1 M HCl
- 0.1 M acetic acid
- 0.1 M NaOH
- $0.1 \mathrm{M} \mathrm{NH}_{3}$

Solutions for C (5 ml each)

1. Deionized Water
2. 0.1 M NaCl
3. 0.1 M buffer (high pH)
4. 0.1 M buffer (low pH)

Part C: pH Buffers
Observe what happens to the pH of each solution when you add small amounts of acid and base.

ACID TEST

- Prepare 4 test tubes
- put 5 mL of each solution into a separate tube
- Estimate the pH with pH paper
- Measure the pH with a pH meter
- Add 3 drops of 0.1 M HCl to each tube
- Estimate the pH with pH paper
- Measure the pH with a pH meter

What is the $[\mathrm{H}+]$ concentration of each?

Exp 08: Acids

Solutions for A / B

- 0.1 M NaCl
- 0.1 M HCl
- 0.1 M acetic acid
- 0.1 M NaOH
- $0.1 \mathrm{M} \mathrm{NH}_{3}$

Solutions for C (5 ml each)

1. Deionized Water
2. 0.1 M NaCl
3. 0.1 M buffer (high pH)
4. 0.1 M buffer (low pH)

Part C: pH Buffers
Observe what happens to the pH of each solution when you add small amounts of acid and base.

BASE TEST

- Prepare 4 test tubes
- put 5 mL of each solution into a separate tube
- Estimate the pH with pH paper
- Measure the pH with a pH meter
- Add 3 drops of 0.1 M NaOH to each tube
- Estimate the pH with pH paper
- Measure the pH with a pH meter

What is the $[\mathrm{H}+]$ concentration of each?

Questions?

