Lewis Structures

Name:

"Everything starts from a dot."

Student ID:

- Wassily Kandinsky

Date:

1. For each atom or ion below, write the number of valence electrons and draw the **Lewis Symbol**.

C1

val e

 \bigcap

val e

K

val e

Br¹⁻

val e

 N^{3-}

val e

 $A1^{3+}$

val e

2. Draw the **Lewis Structure** for each diatomic molecule or ion below. Start by identifying the number of valence electrons.

 H_2

val e

CC

val e

 N_2

val e

 OH^{1-}

val e

 $\mathbb{C}\mathbb{O}^{2}$

val e

 $\mathbb{C}N^{1}$

val e

3. Draw the lewis structure for eac	h polyatomic molecule or ion below
-------------------------------------	------------------------------------

 C_2H_4

SCC1₂

HNBrF

 HCO_2H

BrOH

 C_2H_2

CH₃CHCH₂

FNCH₂

 H_3O^{1+}

	or each ionic compound below. polyatomic ions with covalent bo	
LiC1	MgF ₂	Na ₃ N
NH ₄ Br	NaOH	KCN
5. Draw the lewis structure for compounds have an odd to the compounds have a compound to the compound have a	or each molecular compound be number of electrons. ${ m C1O_3}$	elow. Note: some NS_2

6. Draw the lewis structure for each compound below. Note: rarely, some central atoms in the 3rd period and below may achieve an expanded octet.

IBr₃

PCl₅

SO₄²-

XeF₆

ClO₄1-

POC₁₃

7. The nitrate ion (NO_3^{1-}) has three possible lewis structures. Draw each and assign formal charge to all atoms in the structures.

Draw at least two resonance struct	ture of each molecule below.
--	------------------------------

(a) $CH_3CO_2^{1-}$

(c) O_3

(c) H_2NCHO

- 9. Not all resonance structures are equal.
 - a. The cyanate ion (NCO¹-) has a skeleton of N-C-O. Draw three resonance structures of and assign formal charge to each atom in the structures. Circle the most stable cyanate ion.

b. The isocyanate ion (CNO¹-) has a skeleton of C-N-O. Draw three resonance structures of and assign formal charge to each atom in the structures. Circle the most table isocyante ion.

c. Which is more stable, the ion you circled in (a) or the ion you circled in (b)? Why?

1	0.The mole	ecular d	compound	boron	trifluoride	(BF ₃)	has	at	least	four	possib	ole	Lewis
	structures	. Drav	v resonanc	e struc	ctures and	assign	n forn	nal	char	ge.	Note:	ne	gative
	charge or	ı a cer	ntral atom	is very	unlikely -	this	is th	e r	main	reaso	on som	ne a	atoms
	prefer less	s than a	a full octet o	of elect	rons. Circl	e the r	nost	like	ly res	onan	ice stru	ictu	re.

11. Draw the lewis structure for each compound below. Note: a few elements may prefer less than a complete octet. Hydrogen, Beryllium, Boron, and Aluminum are the most common.

HBC1F

CH₃BeCl AlOBr

de molecule (SO ₂) narge to each atom		
x resonance structocture (other than H)		

14.Draw the lewis structure for eanitrogen bond in (a) is 125 pm pm and 942 kJ/mol; in (c) it's 1	and has a bond streng	th of 418 kJ/mol; in (b) it's 110
(a) HNNH	(c) N_2	$(c)H_2NNH_2$
15.Consider the three structures	in the guestion above	
	r or shorter than double	bonds? What about single
(b) s a double bond twice hold as much energy a		ond? Do three single bonds