Esterification

Ex09

- Fisher Esterification
- Anhydride Esterification

R¹

- Aspirin Synthesis
- Phenol Test

- Setup
- Reaction
- Isolation & Drying
- Analysis
- For Next Week

 R^2

- We're going to synthesize aspirin today.
- Aspirin an useful pharmaceutical that relieves pain, reduces swelling and reduces fever.
- Aspirin is an ester.
- Esters are substances derived from a carboxylic acid in which they hydroxyl group is replaced by an -O-alkyl or -O-aryl group.
- Most naturally occurring fats and oils are esters.
- Many of the food additives that provide our favorite flavors are esters or acids.

OH

CH₃

- Many of the fragrances of perfumes and flowers and the flavors of fruits are due to esters.
- Simple esters are volatile, so we can smell them, and they are soluble in water, so we can taste them.
 - Being a hydrogen bond accepter esters are reasonably water soluble.
 - Having no hydroxy group, they cannot be a hydrogen bond donator, so they have a lower boiling point (more volatile).

- Esters are formed by condensing an alcohol and a carboyxlic acid.
- The reaction is also called an esterification of a carboxylic acid.
- It's an equilibrium reaction, but driven forward by using a large excess of the alcohol.

- Hydrolysis of esters is breaking them into alcohols and carboxylic acids.
- It can be accomplished with acid and heat.
 - It's an equilibrium reaction, but driven forward by using a large excess water.
 - It's the reserve of esterification.

- Hydrolysis of esters is breaking them into alcohols and carboxylic acids.
- Hydrolysis can also be accomplished with strong base.
- This type of hydrolysis is called saponification (soap making).
- It produces carboxylic acid salts instead of acids.

• Esterification:

Ex09

- Esterification
 - Fisher Esterification
 - Anhydride Esterification
- Aspirin Synthesis
- Phenol Test

- The Experiment
 - Setup
 - Reaction
 - Isolation & Drying
 - Analysis
- For Next Week

- Many starting materials cannot be heated to 100° without decomposing.
- It is possible to accomplish esterification at lower temperatures by dehydrating the acid before reacting it with the alcohol.
- Acids heated to 100°C will dehydrate to form acid anhydrides.

- Alcohols will react with the acid anhydride as they would with acids, but reaction can occur at much lower temperatures.
- You don't need the higher temperatures required to drive the reaction and eliminate water.

Predict the product below:

- Esterification
 - Fisher Esterification
 - Anhydride Esterification
 - Aspirin Synthesis
- Phenol Test

- The Experiment
 - Setup
 - Reaction
 - Isolation & Drying
 - Analysis
- For Next Week

• Todays reaction will be an esterification using acetic anhydride.

• Todays reaction will be an esterification using acetic anhydride.

- Esterification
 - Fisher Esterification
 - Anhydride Esterification
- Aspirin Synthesis
 - Phenol Test

- The Experiment
 - Setup
 - Reaction
 - Isolation & Drying
 - Analysis
- For Next Week

- To demonstrate the substance you prepare is the product you expect, you'll react it ferric chloride.
- Phenols (alcohols attached to an aromatic ring) create a violet solution when reacted with ferric chloride.

$$\textcircled{}{} - \mathsf{OH} + \mathsf{FeCl}_3 \longrightarrow \textcircled{}{} - \mathsf{OFeCl}_2 + \mathsf{HCl}$$

• Esterification

Ex09

- Fisher Esterification
- Anhydride Esterification
- Aspirin Synthesis
- Phenol Test

- The Experiment
 - Setup
 - Reaction
 - Isolation & Drying
 - Analysis
- For Next Week

- OBJECTIVE: Synthesize aspirin by the esterification of salicylic acid.
- GOAL: To accomplish the preparation of useful organic substance applying the skills explored in this class for preparation, separation, isolation and testing of purity.

Setup

- Prepare a water bath with electronic thermometer in the hood.
 - Preheat the bath to 50°C.
- Prepare an air condenser.
- Pre-weigh a 5 mL round bottom flask.

- Reaction
 - To reaction vessel
 - Add 520 mg of acetic anhydride
 - d = 1.08 g/mL mm 102.1 mg/mol
 - Add 210 mg of salicylic acid
 - mm 138.1 mg/mol
 - Add large mag stir bar (instructor will provide)
 - By pipet add:
 - ▶ 1 drop concentrated (85%) H₃PO₄
 - Attach condenser and apply heat until the solution becomes homogenous.
 - Heat an additional 10 minutes

- Isolation & Purification
 - Remove the vessel from the bath and allow to cool.
 - Detach condenser.
 - Remove magnetic stir bar (use magnet)
 - Crystalize the product from reaction mixture by cooling reaction vessel in ice.
 - Scratch inside of vessel with glass rod if necessary.

- Isolation & Purification
 - Chill 10 mL of deionized water.
 - After crystals form, add 3.0 mL of chilled water and stir with spatula.
 - Collect crystals by vacuum filtration.
 - Wash with 0.5 mL portion of cold water (3x)
 - Let sit on vacuum 5-10 minutes.
 - Place crystals on pre-weighed watch glass, oven dry 10 minutes.

Analysis

- Determine absence of starting material with a ferric chloride test for phenols.
- Add 0.5 mL deionized water to four small test tubes.
 - Add a small amount of your starting material to tube #1.
 - Add an equal amount of your product to tube #2.
 - Add an equal amount of aspirin to tube #3.
 - Tube #4 is your standard containing only water.
- Add 1 drop of 1% Ferric Chloride to each tube, cap and shake.
- Record your observations.

- Analysis
 - Determine and report the melting point for your product.
 - Compare your melting point to the melting point reported in literature.

bp 134-136°C °C

Next Meeting

- For next Meeting:
 - ► Final Exam
 - Bring to class your calculator, pencils, and eraser.

Questions?

