

- Carboxylic Acids
 - Structure
 - Properties
- Willow Bark
- Esters & Esterification
- ► Aspirin

- The Experiment
 - Part A
 - Use TLC to Separate Compounds
 - Part B
 - Determine Elution Solvents for Separation
- For Next Week

Carboxylic Acids

- Carboxylic Acids have many interesting properties.
 - Many of the sharp flavors we enjoy in food (vinegar, grapefruit, lemon...) are produced by simple substances of the carboxylic acid family of organic substances.
 - These organic molecules are acids. Like the simple binary acids you're already familiar with (HCl, HBr) they release free protons (H⁺).
 - These substances have high acidity (low pH).
 - They neutralize bases like NaOH to form water.
 - Many toxins are simple carboxylic acids, like the formic acid in ant venom.
 - Salts formed from carboxylic acids cause food to be resistant to mold and microorganisms that cause spoilage.
 - They play important roles in how animals store and process energy.

Carboxyl Functional Group

- Carboxylic Acids are defined by the carboxyl functional group.
 - The carboxyl group is a composite of two functional groups you're already familiar with.
 - The hydroxyl group.
 - The carbonyl group.

Carbonyl group

Carboxyl group

 $CH_3 - CH_2 - C - OH$

Carboxyl Functional Group

- Carboxylic Acids are defined by the carboxyl functional group.
 - The carboxyl group is a composite of two functional groups you're already familiar with.
 - The hydroxyl group.
 - The carbonyl group.
 - Both of those groups are polar.
 - Carboxylic acids are strongly polar because they have two polar groups.

Carboxyl Functional Group

- Carboxylic Acids are defined by the carboxyl functional group.
 - The carboxyl group is a composite of two functional groups you're already familiar with.
 - The hydroxyl group.
 - The carbonyl group.
 - Both of those groups are polar.
 - Carboxylic acids are strongly polar because they have two polar groups.
 - Each carboxylic acids forms hydrogen bonds with many water molecules at once.
 - Carboxylic acids with up to four carbon atoms are very soluble in water
 - As the number of carbons increases, the solubility of the carboxylic acid in water is reduced.

Analgesics

- Carboxylic Acids
 - Structure
 - Properties
- Willow Bark
- Esters & Esterification
- ► Aspirin

- The Experiment
 - Part A
 - Use TLC to Separate Compounds
 - Part B
 - Determine Elution Solvents for Separation
- For Next Week

Properties & Structure

- Carboxylic Acids are defined by the carboxyl functional group.
 - The carboxyl group is a composite of two functional groups you're already familiar with.
 - The hydroxyl group.
 - The carbonyl group.
 - Both of those groups are polar.
 - Carboxylic acids are strongly polar because they have two polar groups.
 - Each carboxylic acids forms hydrogen bonds with many water molecules at once.
 - Carboxylic acids with up to four carbon atoms are very soluble in water
 - As the number of carbons increases, the solubility of the carboxylic acid in water is reduced.

- Carboxylic Acids experience all three kinds of intermolecular forces:
 - Van der Waals Forces
 - Dipole-Dipole Forces
 - Hydrogen Bonding
 - Because carboxylic acids have both a hydroxyl and carbonyl group they form more hydrogen bonds than alcohols.
 - Carboxylic Acids have higher boiling points and melting points than even alcohols.

Properties & Structure

- Carboxylic Acids are defined by the carboxyl functional group.
 - Carboxylic acids are strongly polar because they have two polar groups.
 - The two polar groups cooperate to balance negative charge, stabilizing the molecule enough to allow it to release protons.
 - To act as an organic acid.

Properties & Structure

- Carboxylic Acids are defined by the carboxyl functional group.
 - Carboxylic acids are strongly polar because they have two polar groups.
 - The two polar groups cooperate to balance negative charge, stabilizing the molecule enough to allow it to release protons.
 - To act as an organic acid.

Functional group	p Example	pKa	Conjugate Base
Alkane		~50	H ₃ C
Alkene	, H	~43	©_∕
Ketone/ aldehyde	H ₃ C CH ₃	20-24	н₃с [⊖] сн₂
Alcohol	H₃C ^{∕OH}	17	н₃с ^{_0⊝}
Water	HO-H	16	но⊖
Thiols	CH₃S– <mark>H</mark>	13	ch₃s [⊖]
 Carboxylic acids	н₃с́он	4	_{н₃} с ^Ѻ о⊖
Sulfuric acid	H ₂ SO ₄	-3	HSO₄ ⊖
Hydrochloric acid	HCI	-6	cı [⊖]

Analgesics

- Carboxylic Acids
 - Structure
 - Properties
 - Willow Bark
- Esters & Esterification
- ► Aspirin

- The Experiment
 - Part A
 - Use TLC to Separate Compounds
 - Part B
 - Determine Elution Solvents for Separation
- For Next Week

salicylic acid

- By the 1800s, chemists discovered that salicin from the willow tree bark and leaves was responsible for pain relief, fever reduction and reduced inflammation.
- The body converts salicin to salicylic acid by reducing the ether and then oxidizing the primary alcohol to a carboxylic acid.
- Salicylic acid is the substance that has analgesic, anti-inflammatory, and antipyretic properties.

salicylic acid

- Salicylic acid is the substance that has analgesic, anti-inflammatory, and antipyretic properties.
- Salicylic acid is very acidic and can cause upset stomachs, that side effect makes it difficult to use in many cases.
- Phenols and carboxylic acids are acidic, but other substances with these functional groups don't have the same side effect.

2222222

- Salicylic acid is the substance that has analgesic, anti-inflammatory, and antipyretic properties.
- Salicylic acid is very acidic and can cause upset stomachs, that side effect makes it difficult to use in many cases.
- Phenols and carboxylic acids are acidic, but other substances with these functional groups don't have the same side effect.

H+

 In salicylic acid, the functional groups interact to create that greater acidity.

Analgesics

- Carboxylic Acids
 - Structure
 - Properties
- Willow Bark
 - Esters & Esterification
- Aspirin

- The Experiment
 - Part A
 - Use TLC to Separate Compounds
 - Part B
 - Determine Elution Solvents for Separation
- For Next Week

Esters

- Both oil of wintergreen and aspirin are examples of another family of organic compounds.
- Esters are substances derived from an acid (organic or inorganic) in which at least one -OH (hydroxyl) group is replaced by an -O-alkyl or -O-aryl group.
- Usually, esters are derived from a carboxylic acid and an alcohol.
- Esters comprise most naturally occurring fats and oils.

Esters

- Many of the fragrances of perfumes and flowers and the flavors of fruits are due to esters.
- Simple esters are volatile, so we can smell them, and they are soluble in water, so we can taste them.
 - Being a hydrogen bond accepter esters are reasonably water soluble.
 - Having no hydroxy group, they cannot be a hydrogen bond donator, so they have a lower boiling point (more volatile).

Reactions of Esters

- Esters are formed by condensing an alcohol and a carboyxlic acid.
- The reaction is also called an esterification of a carboxylic acid.
- It's an equilibrium reaction, but driven forward by using a large excess of the alcohol.

Reactions of Esters

- Hydrolysis of esters is breaking them into alcohols and carboxylic acids.
- It can be accomplished with acid and heat.
 - It's an equilibrium reaction, but driven forward by using a large excess water.
 - It's the reserve of esterification.

Reactions of Esters

- Hydrolysis of esters is breaking them into alcohols and carboxylic acids.
- Hydrolysis can also be accomplished with strong base.
- This type of hydrolysis is called saponification (soap making).
- It produces carboxylic acid salts instead of acids.

Reaction Summary

• Esterification:

Analgesics

- Carboxylic Acids
 - Structure
 - Properties
- Willow Bark
- Esters & Esterification
 - Aspirin

- The Experiment
 - Part A
 - Use TLC to Separate Compounds
 - Part B
 - Determine Elution Solvents for Separation
- For Next Week

- Chemists tried to improve on salicylic acid to reduce that side effect while retaining it's other useful properties.
- The first thing they tried was replacing the hydrogen in the carboxylic acid with a methyl group.
- Carboxylic Acids and alcohols can react in acid and water to combine. This is a reversible reaction.
- This is a condensation or esterification reaction.

Oil of Wintergreen

methyl salicylate

- Methyl salicylate (oil of wintergreen) retained many of the properties of salicylic acid.
 - It's still an analgesic (pain reliever).
- It lost other properties.
 - Without the carboxylic acid group it is less acidic.
 - It's also less water soluble, more greasy.
 - It's not easily consumed.
- It has other properties all it's own.
 - In small quantities it's used as food flavoring, it's responsible for the mint taste in spearmint gum.
 - It can be absorbed through the skin. It's the active ingredient in Tiger Balm, Icy Hot, and Bengay ointments.
 - It has a high toxicity. One spoonful is three times a lethal dose.
 - In 2007 a professional runner died from excessive application of Bengay.

- The next thing they tried was replacing the hydrogen in the phenol with an acetal group.
- Carboxylic Acids and alcohols can react in acid and water to combine. This is a reversible reaction.
- They used the same esterification reaction to disrupt the phenols contribution to salicylic acids high acidity.

Aspirin

- Acetylsalicylic acid (aspirin) retained many of the properties of salicylic acid.
 - It's still an analgesic (pain reliever)
 - It's also an antipyretic (fever reducer)
 - It's an anti-inflammatory agent
- It lost other properties.
 - It doesn't have the same disruptive effect on the stomach.
- Bayer chemicals introduced aspirin as a product in 1897 and has been primary supplier aspirin for over 100 years.

Analgesics

- Carboxylic Acids
 - Structure
 - Properties
- Willow Bark
- ► Aspirin

- The Experiment
 - A Preparations
 - B Reference Plate
 - C Development Chamber
 - ► D
- For Next Week

Next Meeting

• For next Meeting:

Review: Technique 7 - Reaction Methods Technique 12 - Extractions & Separations section 12.5 section 12.9

- Read: Experiment 17 (page 144) Technique 19 - Column Chromatography
- Do: Identify Objectives List Materials w/ Properties Organize Procedures

Questions?

