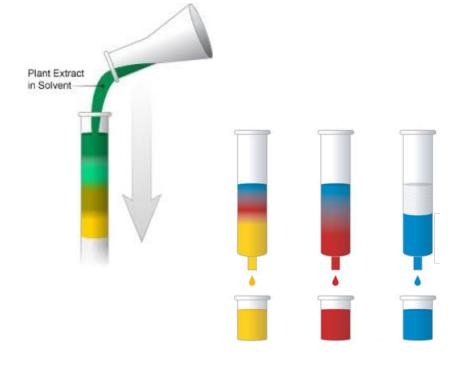
Separation Chromatography

Elution

Ex18


- Eluent Choice & Ratios
- Sample Analysis with co-TLC

- The Experiment
 - A Extraction
 - B Column Setup
 - C Collecting Fractions
 - D Analyzing Samples
- For Next Week

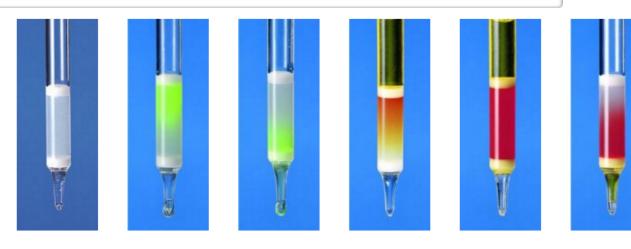
Chromatography

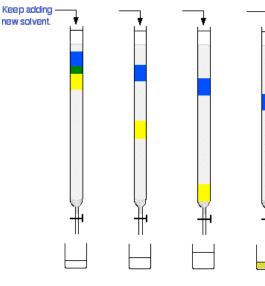
- Chromatography is a technique of separating substances by elution.
 - Substances are loaded onto a stationary phase that binds them.
 - We usually use silica or alumina gel, which reacts with water to produce many OH groups and therefore strongly binds to most substances.
 - A solvent of solvent mixture is chosen that the substances are moderately soluble in.
 - The stationary phase is washed (eluted) in the solvent (the solvent is the mobile phase).
 - The substances being separated are continuously pulled into and fall out of the mobile phase.
 - Think of stepping on and off a moving walkway.
 - The substances that are even slightly more soluble in the mobile phase move faster.
 - Even very slight differences in solubility can result in large separations over time.

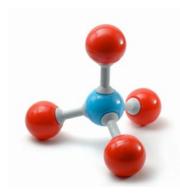
Elution

- Because the distance substances move in chromatography depends on their speed.
 - ...and because that speed depends on their relative solubility...
- Differences in solubility translate to differences in the *speed* at which substances move.
 - Speed is distance over time.
- So we have two controls with which to enhance separation.
 - Their time in the mobile phase (more soluble eluents)
 - The length of the solid phase. (longer solid phase)
- Each can make small differences in solubility produce big separations through chromatography.

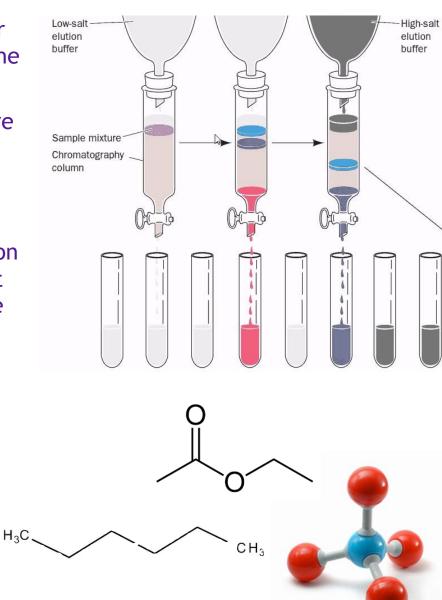
longer race = bigger separation


Better Separation


- You use chromatography when two substances have to slight a difference in solubility to be separated by other techniques.
 - If there is a big difference, do an extraction or crystallization.
 - It is lest costly, faster and easier.
- Chromatography can separate substances with the slightest differences in solubility.
 - ... by reducing their time in the mobile phase.
 - ... by eluting them over a long enough solid phase.
- It is also possible to vary the substance in the solid phase. More aggressive substances are used in gas chromatography and high pressure chromatogrphy to increase retention times.


Longer Elution

- Even very small differences in speed, can produce large separations, if you run a long enough race.
- Column Chromatography allows you to run a substance as far you like.
 - Some columns are two stories high.
- The process is fundamentally the same as running on a thin layer, but it allows you to separate larger quantities.
- Large enough quantities to be useful as a means of purifying materials.



Change the beaker once the yellow starts to drop through.

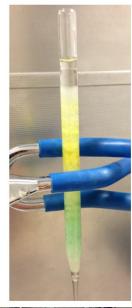
Elution Mixtures

- By tuning the elution mixture you can increase or decrease the time the two substances spend in the mobile phase.
- You can choose a solvent that the substances have medium solubility in.
 - Example ethyl acetate
- You can increase the time the substances spend on the column, and thus separation, by diluting that eluent with a miscible solvent the substances are not soluble in.
 - Example hexane
 - A mixture of 50% hexane, 50% ethyl acetate
- And you can speed things up when needed by switching to a solvent more rich in that more soluble solvent.
 - Example 20% hexane, 80% ethyl acetate

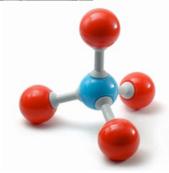
co-TLC Analysis

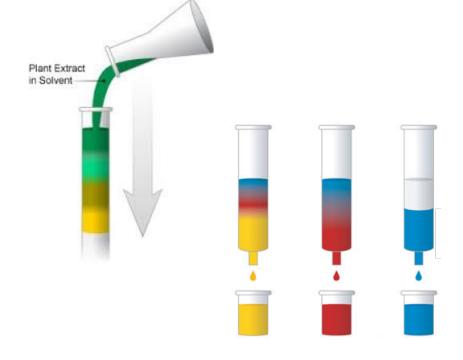
- Column Chromatography is often monitored with TLC.
- You can often use TLC to determine optimal elution mixtures for separation.

 And monitor the fractions you take off the column the same way.

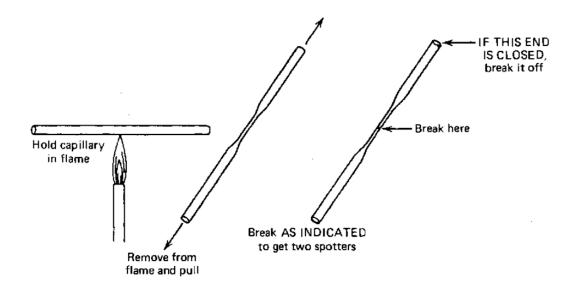


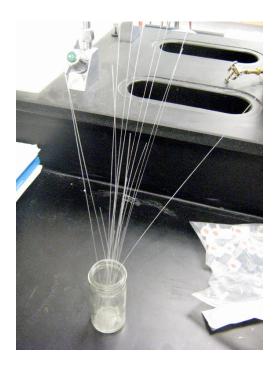
- Separation Chromatography
 - Elution

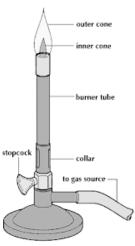

Ex18


- Eluent Choice & Ratios
- Sample Analysis with co-TLC

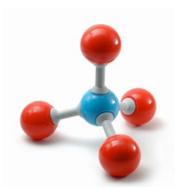
- The Experiment
- A Extraction
 - B Column Setup
 - C Collecting Fractions
 - D Analyzing Samples
- For Next Week



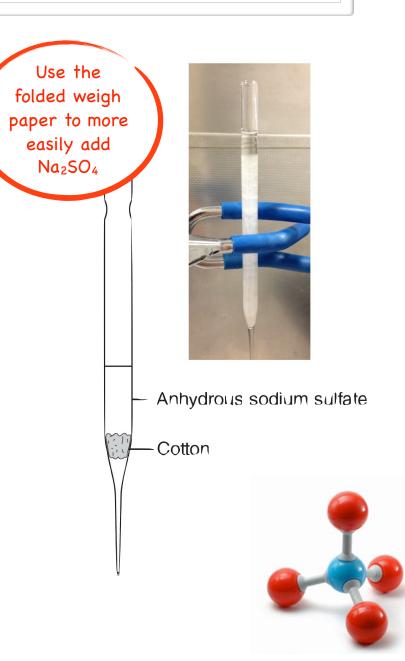


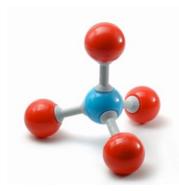


- Prepare Capillaries
 - If you are out, make 20 micro capillaries.
 - Heat capillary or disposable pipet at tip of burner flame for 30-90 seconds
 - Time needed will vary.
 - Look for glass to get jelly like.
 - Remove from flame before pulling
 - Pull as soon as removed from flame
 - Let cool, break into two



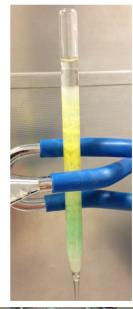
- Prepare Spinach
 - Weight 0.5 grams spinach
 - Leaves only, avoid large veins and stalks
 - Cut into small pieces
 - Add 1.0 mL COLD Acetone
 - Grind with mortar and pestle into liquid
 - Add slightly (0.5 mL) more acetone if needed to produce liquid
 - Pipette into centrifuge tube
 - Chase with 1 mL cold acetone
 - Centrifuge mixture



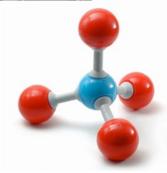

- Extract Spinach
 - Transfer liquid to a new centrifuge tube with cap.
 - Add 2.0 mL hexanes and shake capped tube.
 - Then, add 2.0 mL deionized water and shake tube.
 - Vent tube frequently by opening cap.
 - Centrifuge to break emulsion
 - Remove bottom aqueous layer
- Dry Hexane Layer
 - Clamp a pasteur pippete with lab stand to create filtration column
 - Wedge a small compressed ball of cotton in end
 - Carefully add 0.5 g anhydrous Na₂SO₄
 - (about half full)
 - Add clean dry test tube or small erelenymber flask under filtration column
 - Transfer hexane through column by pipette
 - Chase with 0.5 mL Hexane

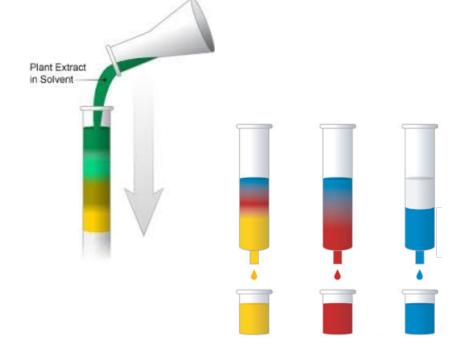
Concentrate Extracts

- Reduce extracts with hot water bath (40-60° C) to small concentrated sample
- Collect extracts in minimal amount of hexane
- Stopper flask and place in dark drawer, until you are ready to run column.

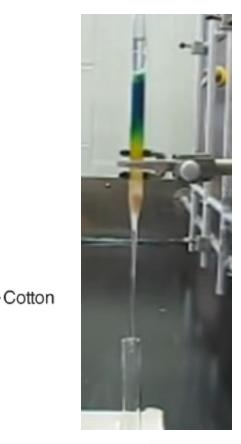


- Separation Chromatography
 - Elution

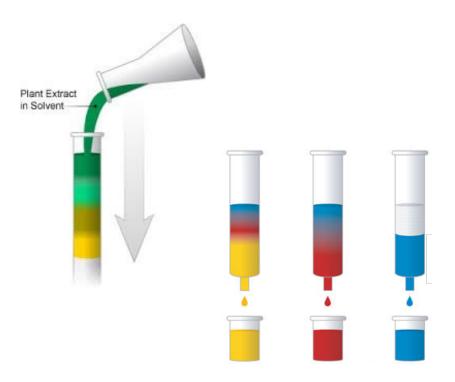

Ex18

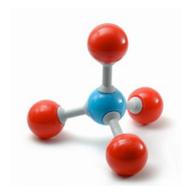

- Eluent Choice & Ratios
- Sample Analysis with co-TLC

- The Experiment
 - A Extraction
 - ≽ B Column Setup
 - C Collecting Fractions
 - D Analyzing Samples
- For Next Week

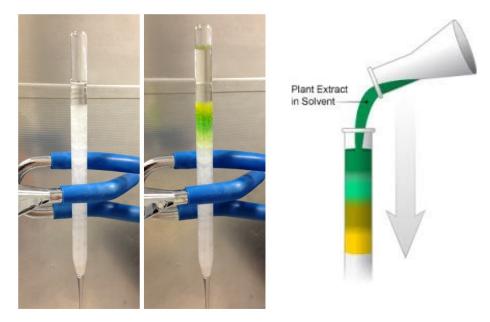


Prepare Elution Mixtures

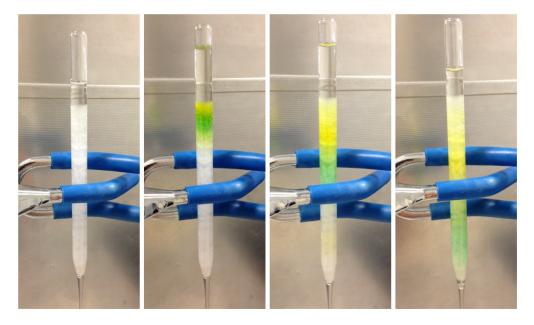

- ▶ 10.0 mL Hexane
- 6.0 mL 70% Hex, 30% Acetone
- 6.0 mL Acetone
- 6.0 mL 80% Acetone, 20% MeOH
- Prepare the Column
 - Pack end of pipette with Cotton
 - Ad 1.25 g Alumina Gel
 - Tap column to let gel settle
 - Use folded weighing paper to add gel
 - Clamp Column to lab jack
 - Position first test tube under column
 - Charge column with hexane
 - Slowly add about 3.0 mL of hexane to column, let drain
 - Use pipette bulb if it drains too slowly
 - Keep top of column wet (don't let run dry)

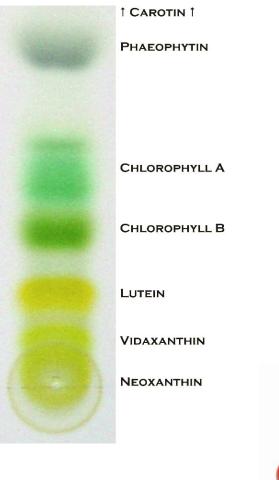


Run Column


- Using a remarked pipette, at 0.25 mL of your extract to the top of the column
- Let the extract settle to the to of the alumina gel.
- After it settles add your first elution mixture (hexane).
- As the solvent runs through the column, the mixture will separate into at least two bands.
- Collect the first (yellow) band.
- Once the solvent is running clear, use your second eluent mixture (70% hexane, 30% acetone).
- Collect the second band.
- If needed, increase the solvent eluent strength by using your third or fourth eluent

Run Column


- Using a remarked pipette, at 0.25 mL of your extract to the top of the column
- Let the extract settle to the to of the alumina gel.
- After it settles add your first elution mixture (hexane).
- As the solvent runs through the column, the mixture will separate into at least two bands.
- Collect the first (yellow) band.
- Once the solvent is running clear, use your second eluent mixture (70% hexane, 30% acetone).
- Collect the second band.
- If needed, increase the solvent eluent strength by using your third or fourth eluent


Run Column

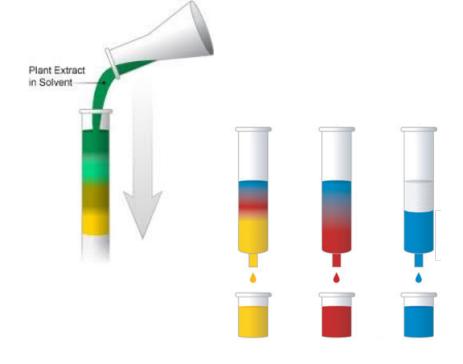
- Using a remarked pipette, at 0.25 mL of your extract to the top of the column
- Let the extract settle to the to of the alumina gel.
- After it settles add your first elution mixture (hexane).
- As the solvent runs through the column, the mixture will separate into at least two bands.
- Collect the first (yellow) band.
- Once the solvent is running clear, use your second eluent mixture (70% hexane, 30% acetone).
- Collect the second band.
- If needed, increase the solvent eluent strength by using your third or fourth eluent

- Analysis
 - Spot a TLC plate with three tracks.
 - Your extract
 - Your yellow band
 - Your green band
 - Develop the TLC plate
 - Elution 70% hex, 30% Acetone
 - Based on the relative Rf's and colors reported in your lab description identify the substances in each band.

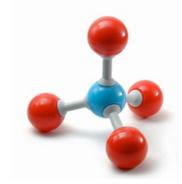
Separation Chromatography

Elution

Ex18


- Eluent Choice & Ratios
- Sample Analysis with co-TLC

- The Experiment
 - A Extraction
 - B Column Setup
 - C Collecting Fractions
 - D Analyzing Samples
- For Next Week



Next Meeting

- For next Meeting:
 - Midterm Exam
 - Questions will be based on the topics lists.
 - Should take less than an hour, but you are welcome to use the full lab period.

Questions?

