

Valence Shell Electron Pair Repulsion theory allows you to predict molecular shape. Lewis Dot theory extended to 3 dimensions.

Valence Shell Electron Pair Repulsion

Microscopic properties

- Composition, Connectivity & Shape
- Molecular Shape
 - eg: sense of taste; active sites
- VSEPR Theory: Electronic Geometry
 - Kinds of Electron Groups
 - Electron Domains
 - Electron Pair Repulsion
 - Basic shapes (geometry)
 - ▶ linear
 - two electron groups, eg: BeCl2, CO2
 - trigonal planar
 - → three electron groups, eg: BF3, H2CO
 - tetrahedral
 - four electron groups, eg: CH4
 - trigonal bipyramidal
 - five electron groups, eg: PCl5
 - octahedral
 - six electron groups, eg: SF6
- VSEPR Theory: Molecular Geometry
 - Difference between electron and molecular geometries
 - Four electron groups with lone pairs
 - trigonal pyramidal
 - one lone pair; smaller bond angle than

bent

- two lone pairs; smaller bond angle than tetrahedral or trigonal bipyramidal
- example: H2O
- Five electron groups with lone pairs
 - seesaw
 - one lone pair; goes in trigonal plane
 - example: SF4+
 - T-shaped
 - two lone pairs, both in trigonal plane
 - example: BrF3
 - ▶ linear
 - three lone pairs, all in trigonal plane
 - example: XeF2
- Six electron groups with lone pairs
 - square pyramidal
 - example: BrF5
 - square planar
 - lone pairs 1800 apart; example: XeF4
- VSEPR Theory: Predicting Geometries
 - Procedure
 - Draw the Lewis structure.
 - Find the number of domains
 - Which gives you the electronic geometry.
 - Divide the domains into bonding and nonbonding groups.
 - Draw the molecular geometry.
 - Write the name of the name of that geometry.
 - Shapes of molecules with more than one central atom.

Sweetness is a function of molecular shape.

- The taste of a food depends on the interaction between the food molecules and taste cells on your tongue.
- The main factors that affect this interaction are the shape of the molecule and charge distribution within the molecule.
- The food molecule must fit snugly into the active site of specialized proteins on the surface of taste cells.
- When this happens, changes in the protein structure cause a nerve signal to transmit.
- Sugar molecules fit into the active site of taste cell receptors called Tlr3 receptor proteins.
- When the sugar molecule (the key) enters the active site (the lock), the different subunits of the T1r3 protein split apart.
- This split causes ion channels in the cell membrane to open, resulting in nerve signal transmission.
- Artificial sweeteners also fit into the Tlr3 receptor, sometimes binding to it even stronger than sugar, making them "sweeter" than sugar.

Molecular Shape

- Properties of molecular substances depend on the structure of the molecule.
- The structure includes many factors:
 - The atoms that make up the molecule (composition).
 - The skeletal arrangement of the atoms and the kind of bonding between the atoms (connectivity).
 - Ionic, polar covalent, or covalent
 - The 3D form of the molecule (shape).
- Bonding theory should allow you to predict the shapes of molecules.
- Molecules are three-dimensional objects.
- We often describe the shape of a molecule with terms that relate to geometric figures.
- These geometric figures have characteristic "corners" that indicate the positions of the surrounding atoms around a central atom in the center of the geometric figure.
- The geometric figures also have characteristic angles that we call bond angles.
- We often describe the shape of a molecule with terms that relate to geometric figures.
- These geometric figures have characteristic "corners" that indicate the positions of the surrounding atoms around a central atom in the center of the geometric figure.
- The geometric figures also have characteristic angles that we call bond angles.

$C_8H_{10}N_4O_2$

Defining Molecular Shape

- > Covalent bonds lock electrons into positions between atoms.
- > Multiple covalent bonds can connect to a central atom in different geometries.
- Geometries are defined by:
 - bond angles: the angle between two bonds
 - bond distances: the distance between two bonded atoms
- Molecules can have the same composition, same connectivity but different shapes.
 - A central atom with two valence atoms can be:
 - Bent
 - Linear
 - A central atom with three valence atoms can be:
 - Planar
 - Pyramidal
 - T-Shaped
- Overall molecular shape is the sum of shape around each atom.
- > The shape of a molecule plays an important role in its reactivity.
- We need a tool to predict valence atom shapes.

3 Valence Atom Shapes

2 Valence Atom Shapes

Valence Shell Electron Pair Repulsion

- Microscopic properties
 - Composition, Connectivity & Shape
 - Molecular Shape
 - eg: sense of taste; active sites
 - VSEPR Theory: Electronic Geometry
 - Kinds of Electron Groups
 - Electron Domains
 - Electron Pair Repulsion
 - Basic shapes (geometry)
 - ▶ linear
 - two electron groups, eg: BeCl2, CO2
 - trigonal planar
 - three electron groups, eg: BF3, H2CO
 - tetrahedral
 - four electron groups, eg: CH4
 - trigonal bipyramidal
 - five electron groups, eg: PCl5
 - octahedral
 - six electron groups, eg: SF6
- VSEPR Theory: Molecular Geometry
 - Difference between electron and molecular geometries
 - Four electron groups with lone pairs
 - trigonal pyramidal
 - one lone pair; smaller bond angle than

- bent
 - two lone pairs; smaller bond angle than tetrahedral or trigonal bipyramidal
 - example: H2O
- Five electron groups with lone pairs
 - seesaw
 - one lone pair; goes in trigonal plane
 - example: SF4+
 - T-shaped
 - two lone pairs, both in trigonal plane
 - example: BrF3
 - ▶ linear
 - three lone pairs, all in trigonal plane
 - example: XeF2
- Six electron groups with lone pairs
 - square pyramidal
 - example: BrF5
 - square planar
 - Ione pairs 1800 apart; example: XeF4
- VSEPR Theory: Predicting Geometries
 - Procedure
 - Draw the Lewis structure.
 - Find the number of domains
 - Which gives you the electronic geometry.
 - Divide the domains into bonding and nonbonding groups.
 - Draw the molecular geometry.
 - Write the name of the name of that geometry.
 - Shapes of molecules with more than one central atom.

11

Electron Domains

-H

Ĥ

- To identify the shape around atoms in a molecule, we need to understand the shape formed by the electron pairs around that atom.
- By noting the number of bonding and nonbonding electron pairs we can predict bond angles and distances.
- We refer to the electron pairs as electron domains.
 - In a double or triple bond, all electrons shared between those two atoms are on the same side of the central atom; therefore, they count as one electron domain.
- This allows us to predict the shape of a molecule, by considering electron repulsion...

Bonding pairs

There are three electron groups on N: •One lone pair •One single bond One double bond

Electron Repulsion

- Electron pairs, whether they be bonding or nonbonding, repel each other.
- By assuming the electron pairs are placed as far as possible from each other, we can predict the shape of the molecule.
- > There are five basic arrangements of electron groups around a central atom.
 - That's based on a maximum of six bonding electron groups around an atom.
 - (There may be more than six on very large atoms, it is very rare. We won't worry about those)
- Each of these five basic arrangements results in five different basic electron geometries.
 - In order for the molecular shape and bond angles to be a "perfect" geometric figure, all the electron groups must be bonds and all the bonds must be equivalent.
 - We'll tweak the model later to account for differences.
 - For molecules that exhibit resonance, it doesn't matter which resonance form you use as the underlying electron geometry will be the same.
- All atoms that have 2-6 Electron Domains will have their electron pairs arranged in one of these five basic geometries.

2 Electron Domains – Linear

- The best arrangement of two electron domains around a central atom is linear.
- A pushes C away until the ABC bond angle is 180°
- Pushing any farther than 180° brings C closer to A – on the other side.

3 Electron Domains – Trigonal Planar

120°

В

A٠

- Three electron domains around a central atom form a trigonal planar arrangement.
- The bond angle between each atom is 120°
- The three domains remain in the same plane for the same reason they remain linear when there are two domains.

A B C

4 Electron Domains – Tetrahedral

- Four electron domains form a tetrahedral arrangement around the central atom.
- A tetrahedron, a pyramid with a triangular base, defines the position of each domain.
- All domains are equidistant from each other.
- The bond angle between any two domains is 109.5°
- To draw a tetrahedral atom, draw three atoms in the plane and then use a dotted line to show one behind and a triangle to show one in front.

5 Electron Domains – Trigonal Bipyramidal

- Five electron domains form a trigonal bipyramidal arrangement around the central atom.
- This optimal arrangement has <u>two types</u> of positions:
 - Equatorial
 - Axial
- Equatorial positions are 120° apart.
- Axial positions are above and below the equatorial plane.
- Axial positions are 90° from the equatorial plane.

6 Electron Domains – Octahedral

- Six electron domains form an octahedral arrangement around the central atom.
- The points of an octahedron geometric shape defines the positions of domains in an octahedral arrangement.
 (Played D&D? Think 8 sided dice!)
- All six positions are equivalent.
- Each position is equidistant from 4 other positions and forms a 90° angle with each.
- It is also opposite the last position and has 180° angle with it.

Electron Repulsion

- Electron pairs, whether they be bonding or nonbonding, repel each other.
- By assuming the electron pairs are placed as far as possible from each other, we can predict the shape of the molecule.
- > There are five basic arrangements of electron groups around a central atom.
 - That's based on a maximum of six bonding electron groups around an atom.
 - (There may be more than six on very large atoms, it is very rare. We won't worry about those)
- Each of these five basic arrangements results in five different basic electron geometries.
 - In order for the molecular shape and bond angles to be a "perfect" geometric figure, all the electron groups must be bonds and all the bonds must be equivalent.
 - We'll tweak the model later to account for differences.
 - For molecules that exhibit resonance, it doesn't matter which resonance form you use as the underlying electron geometry will be the same.
- All atoms that have 2-6 Electron Domains will have their electron pairs arranged in one of these five basic geometries.

	Electronic Geometry	Bond Angles
1 e pair	Linear	180°
2 e pair	Linear	180°
3 e pair	Trigonal Planar	120°
4 e pair	Tetrahedral	109.5°
5 e pair	Trigonal Bipyramidal	90° and 120°
6 e pair	Octahedral	90°

Valence Shell Electron Pair Repulsion

- Microscopic properties
 - Composition, Connectivity & Shape
 - Molecular Shape
 - eg: sense of taste; active sites
- VSEPR Theory: Electronic Geometry
 - Kinds of Electron Groups
 - Electron Domains
 - Electron Pair Repulsion
 - Basic shapes (geometry)
 - ▶ linear
 - two electron groups, eg: BeCl2, CO2
 - trigonal planar
 - three electron groups, eg: BF3, H2CO
 - tetrahedral
 - four electron groups, eg: CH4
 - trigonal bipyramidal
 - five electron groups, eg: PCl5
 - octahedral
 - six electron groups, eg: SF6
 - VSEPR Theory: Molecular Geometry
 - Difference between electron and molecular geometries
 - Four electron groups with lone pairs
 - trigonal pyramidal
 - one lone pair; smaller bond angle than

- bent
 - two lone pairs; smaller bond angle than tetrahedral or trigonal bipyramidal
 - example: H2O
- Five electron groups with lone pairs
 - seesaw
 - one lone pair; goes in trigonal plane
 - example: SF4+
 - T-shaped
 - two lone pairs, both in trigonal plane
 - example: BrF3
 - ▶ linear
 - three lone pairs, all in trigonal plane
 - example: XeF2
- Six electron groups with lone pairs
 - square pyramidal
 - example: BrF5
 - square planar
 - Ione pairs 1800 apart; example: XeF4
- VSEPR Theory: Predicting Geometries
 - Procedure
 - Draw the Lewis structure.
 - Find the number of domains
 - Which gives you the electronic geometry.
 - Divide the domains into bonding and nonbonding groups.
 - Draw the molecular geometry.
 - Write the name of the name of that geometry.
 - Shapes of molecules with more than one central atom.

Electronic vs Molecular Geometry

- Electronic geometry is the shape defined by the electron domains.
- Molecular geometry is the shape defined by atoms which <u>may</u> be attached to those domains.
- Don't confuse the two!
- There are <u>only five electronic geometries</u>.
- The question "what is the electronic geometry of an atom?" will only have one of these five answers:
 - * Linear (two domains)
 - * Trigonal Planar (three domains)
 - * Tetrahedral (four domains)
 - * Trigonal Bipyramidal (five domains)
 - * Octahedral (six domains
- If there are 4 electron domains, the electronic structure is tetrahedral.
- With a tetrahedral electronic geometry we could have one atom, two atoms, three atoms, or four atoms stuck onto the central atom.
- A tetrahedral electronic geometry could produce 4 different molecular geometries.

Tetrahedral Electronic Geometry

- There are only five electronic geometries, but each can result in many molecular geometries.
- Only one electronic geometry occurs when there are 4 electron domains.
- But there are multiple molecular geometries that can be built on a tetrahedral electronic geometry.

Bond Angle Compression

- Two electrons, a lone pair, in an electronic domain spread out.
- When those same electrons are in a covalent bond, the nuclei of the two atoms pull them into a smaller area.
- Lone pairs occupy more space than covalent bonds.
- Lone pairs press on adjacent covalent bonds and compress the bond angles between covalent bonds.
- You are responsible for knowing the ideal bond angle of a tetrahedral geometry is 109.5°
- You are responsible for knowing when bond angle compression produces an angle less than 109.5°
 Write " < 109.5" when asked to label compressed bond angles.
- You are not responsible for knowing the exact angle of a compressed bond.

Trigonal Bipyramidal Electronic Geometry

Electron Groups*	Bonding Groups	Lone Pairs	Electron Geometry	Molecular Geometry	Approximate Bond Angles	E	xample
2	2	0	Linear	Linear	180°	;;;=c=;;;	• • •
3	3	0	Trigonal planar	Trigonal planar	120°	:ё: :ё—в—ё:	
3	2	1	Trigonal planar	Bent	<120°	:0=S-0:	••••
4	4	0	Tetrahedral	Tetrahedral	109.5°	н — с — н н	
4	3	1	Tetrahedral	Trigonal pyramidal	<109.5°	н— й — н н	
4	2	2	Tetrahedral	Bent	<109.5°	н—∷—н	.
5	5	0	Trigonal bipyramidal	Trigonal bipyramidal	120° (equatorial) 90° (axial)	::::::::::::::::::::::::::::::::::::::	
5	4	1	Trigonal bipyramidal	Seesaw	<120° (equatorial) <90° (axial)	:F: :F.─_sF: :F:	.
5	3	2	Trigonal bipyramidal	T-shaped	<90°	F. → Br → F:	
5	2	3	Trigonal bipyramidal	Linear	180°	:F-Xe-F:	•
6	6	0	Octahedral	Octahedral	90°	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	
6	5	1	Octahedral	Square pyramidal	<90°	:F: :F-Br-F: :F: :F:	
6	4	2	Octahedral	Square planar	90°	:F:	

	Electronic Geometry	Molecular Geometry	Bond Angles
1 e pair	Linear	Linear	180°
2 e pair	Linear	Linear	180°
		Linear	
3 e pair	Trigonal Planar	Trigonal Planar	120°
		Bent	
		Linear	
4 e pair	Tetrahedral	Tetrahedral	109.5°
		Trigonal Pyramidal	
		Bent	
		Linear	
5 e pair	Trigonal Bipyramidal	Trigonal Bipyramidal	90° and 120°
		See-saw	
		T-Shaped	
		Linear	
		Linear	
6 e pair	Octahedral	Octahedral	90°
		Square Pyramidal	
		Square Planar	
		T-Shaped	
		Linear	
		Linear	

Valence Shell Electron Pair Repulsion

- Microscopic properties
 - Composition, Connectivity & Shape
 - Molecular Shape
 - eg: sense of taste; active sites
- VSEPR Theory: Electronic Geometry
 - Kinds of Electron Groups
 - Electron Domains
 - Electron Pair Repulsion
 - Basic shapes (geometry)
 - ▶ linear
 - two electron groups, eg: BeCl2, CO2
 - trigonal planar
 - three electron groups, eg: BF3, H2CO
 - tetrahedral
 - four electron groups, eg: CH4
 - trigonal bipyramidal
 - five electron groups, eg: PCl5
 - octahedral
 - six electron groups, eg: SF6
- VSEPR Theory: Molecular Geometry
 - Difference between electron and molecular geometries
 - Four electron groups with lone pairs
 - trigonal pyramidal
 - one lone pair; smaller bond angle than

- bent
 - two lone pairs; smaller bond angle than tetrahedral or trigonal bipyramidal
 - example: H2O
- Five electron groups with lone pairs
 - seesaw
 - one lone pair; goes in trigonal plane
 - example: SF4+
 - T-shaped
 - two lone pairs, both in trigonal plane
 - example: BrF3
 - ▶ linear
 - three lone pairs, all in trigonal plane
 - example: XeF2
- Six electron groups with lone pairs
 - square pyramidal
 - example: BrF5
 - square planar
 - lone pairs 180o apart; example: XeF4

VSEPR Theory: Predicting Geometries

- Procedure
 - Draw the Lewis structure.
 - Find the number of domains
 - Which gives you the electronic geometry.
 - Divide the domains into bonding and nonbonding groups.
 - Draw the molecular geometry.
 - Write the name of the name of that geometry.
- Shapes of molecules with more than one central atom.

VSEPR Process

- What is the molecular geometry of carbon in CH₂O?
- To find the molecular geometry of an atom:
 - Draw the Lewis structure.
 - Find the number of domains
 - Which gives you the electronic geometry.
 - Divide the domains into bonding and non-bonding groups.
 - Draw the molecular geometry.
 - Write the name of the name of that geometry.

VSEPR Process

• What is the molecular geometry of iodine in ICl₅?

- To find the molecular geometry of an atom:
 - Draw the Lewis structure.
 - Find the number of domains
 - Which gives you the electronic geometry.
 - Divide the domains into bonding and non-bonding groups.
 - Draw the molecular geometry.
 - Write the name of the name of that geometry.

Electronici 6 domains -> Octobedel Moleculu 5 boras -> Square Pyramic/21

Larger Molecules

- VSEPR is a tool for understanding the geometry around each atom.
- For larger molecules, sketch out the structure using the Lewis model, and then apply VSEPR separately to each central atom.

Valence Shell Electron Pair Repulsion

- Microscopic properties
 - Composition, Connectivity & Shape
 - Molecular Shape
 - eg: sense of taste; active sites
- VSEPR Theory: Electronic Geometry
 - Kinds of Electron Groups
 - Electron Domains
 - Electron Pair Repulsion
 - Basic shapes (geometry)
 - ▶ linear
 - two electron groups, eg: BeCl2, CO2
 - trigonal planar
 - → three electron groups, eg: BF3, H2CO
 - tetrahedral
 - four electron groups, eg: CH4
 - trigonal bipyramidal
 - five electron groups, eg: PCl5
 - octahedral
 - six electron groups, eg: SF6
- VSEPR Theory: Molecular Geometry
 - Difference between electron and molecular geometries
 - Four electron groups with lone pairs
 - trigonal pyramidal
 - one lone pair; smaller bond angle than

- bent
 - two lone pairs; smaller bond angle than tetrahedral or trigonal bipyramidal
 - example: H2O
- Five electron groups with lone pairs
 - seesaw
 - one lone pair; goes in trigonal plane
 - example: SF4+
 - T-shaped
 - two lone pairs, both in trigonal plane
 - example: BrF3
 - ▶ linear
 - three lone pairs, all in trigonal plane
 - example: XeF2
- Six electron groups with lone pairs
 - square pyramidal
 - example: BrF5
 - square planar
 - Ione pairs 1800 apart; example: XeF4
- VSEPR Theory: Predicting Geometries
 - Procedure
 - Draw the Lewis structure.
 - Find the number of domains
 - Which gives you the electronic geometry.
 - Divide the domains into bonding and nonbonding groups.
 - Draw the molecular geometry.
 - Write the name of the name of that geometry.
 - Shapes of molecules with more than one central atom.

Questions?