
Quantum Molecules

Two way’s to apply quantum theory to the whole molecule. 

Valence Bond Theory & Molecular Orbital Theory.
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Valence Bond & MO Theories

‣ Molecular Shape and Polarity 

‣ Polar Bond & Polar Molecules 

‣ Net Dipole Moment 

‣ Adding dipoles: vector addition 

‣ in one dimension 

‣ two & three dimensions 

‣ try some examples 

‣ Valence Bond Theory 
‣ Quantum View of Covalent Bonds 

‣ Bonding with Schrödinger’s Quantum 
Atom 

‣ Orbital Overlap is a Covalent Bond  

‣ Forming Molecules w/ Quantum Atoms 

‣ H2S & H2C 

‣ Hybridization of Atomic Orbitals 
‣ Atomic Orbitals inside a molecule are 

not the same as the atom by itself. 

‣ sp3 orbitals 

‣ Sigma & Pi bonding: sp2 & sp orbitals 

‣ d-Orbital Hybridization: sp3d & sp3d2 

‣ Determining Hybridization 
‣ Look at electronic shape of the atom 

‣ Molecular Orbital Theory 
‣ Electron Delocalization 

‣ Linear combinations of atomic s orbitals 
‣ constructive:  bonding 

‣ destructive:  antibonding 

‣ Molecular orbital diagrams 
‣ H2, He2, He2+ 

‣ bond order 

‣ Linear combinations of atomic p orbitals 
‣ shapes of bonding and antibonding 

orbitals 

‣ Period 2 homonuclear diatomics 

‣ 2s-2p mixing 
‣ paramagnetism and diamagnetism 

‣ liquid oxygen 

‣ Period 2 heteronuclear diatomic 
molecules 

‣ Polyatomic molecules 
‣ electron delocalization in ozone, benzene
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Polar Molecules

‣ Bonds can have a dipole moment. 

‣ A bond dipole is how balanced the electrons in a bond are between two atoms. 

‣ Bonds that have a dipole moment are said to be polar bonds. 

‣ A molecule can have a net dipole moment. 

‣ The net dipole moment is how balanced the electrons are overall in the entire 
molecule. 

‣ Molecules that have a net dipole are said to be polar molecules. 

‣ Polar molecules have a “north pole” and “south pole”.   

‣ They interact with electromagnetic fields. 

‣ Including electromagnetic fields of other polar molecules. 

‣ They also have other physical properties unique to polar molecules. 

‣ For example: 

‣ Polar molecules have higher boiling points. 

‣ Polar molecules can solvate ions. 

‣ Polar substances don’t mix with non-polar substances (oil and water). 

‣ Polar molecules can be affected by magnetic fields (how liquid crystal displays work).
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Polar Molecules

‣ If there are many bonds, how do you 
decide if the molecule is polar or non-
polar? 

‣ You add up all the bond dipoles in the 
molecule to create a net dipole. 

‣ Bond dipoles are vectors, we need to 
talk about vector addition.
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Vector Addition in 1D

‣ Dipoles are vectors. 

‣ Vectors have direction and magnitude. 

‣ In grade school, arithmetic is taught using a number line. 

‣ Combining vectors, vector addition, is the same as number 
line arithmetic.  

‣ A force of 5 with another force of 5 pointed the same way is a 
force of 10. 

‣ A force of 5 with a force of 5 pointed opposite it is 0. 

‣ A force of 10 with a force of 5 pointed the opposite is a force 
of 5.  

‣ The individual dipole moments in a molecule contribute to 
the net dipole moment of the molecule the same way. 

‣ Dipoles can cooperate or they can cancel.  
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Vectors in 2D Have x and y Components

‣ When vectors are not on the same number line, it’s more 
challenging to combine them. 

‣ You need to consider what part of each vector is on the x axis 
and what part is on the y. 

‣ You can then add each part, just like number line arithmetic.
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Vectors in 2D Have x and y Components

‣ When vectors are not on the same number line, it’s more 
challenging to combine them. 

‣ If you have 3 or more vectors, sometimes it helps to add two 
together, then add a third to it, and so on.
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Molecules Exist in 3D Space

‣ Molecules are 3D objects. 

‣ We have to consider x, y, and z dimensions of bond 
dipoles, to understand the net dipole.
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Symmetric Tetrahedral 
Molecules are Non-Polar
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1 e pair Linear Linear 180˚

2 e pair Linear Linear 180˚

Linear

3 e pair Trigonal Planar Trigonal Planar 120˚

Bent

Linear

4 e pair Tetrahedral Tetrahedral 109.5˚

Trigonal Pyramidal

Bent

Linear

5 e pair Trigonal Bipyramidal Trigonal Bipyramidal 90˚ and 120˚

See-saw

T-Shaped

Linear

Linear

6 e pair Octahedral Octahedral 90˚

Square Pyramidal

Square Planar

T-Shaped

Linear

Linear

Electronic Geometry Molecular Geometry Bond Angles



Molecules Exist in 3D Space

‣ Which molecules or ions are polar? 

‣ Draw the 3D structure, show bond angles, and draw the net dipole 
for the molecule or ion.
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Valence Bond & MO Theories

‣ Molecular Shape and Polarity 

‣ Polar Bond & Polar Molecules 

‣ Net Dipole Moment 
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‣ in one dimension 

‣ two & three dimensions 

‣ try some examples 

‣ Valence Bond Theory 
‣ Quantum View of Covalent Bonds 

‣ Bonding with Schrödinger’s Quantum 
Atom 

‣ Orbital Overlap is a Covalent Bond  

‣ Forming Molecules w/ Quantum Atoms 
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orbitals 
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‣ Polyatomic molecules 
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Valence Bond Theory

‣ Erwin Schrödinger gave us a mathematical model for predicting the 
behavior of electrons around atomic nuclei. 

‣ Schrödinger’s equation accurately predicts the shape of electron 
density (orbitals) around atoms. 

‣ Valence Bond theory attempts to reconcile Schrödinger’s model of 
the atom with Lewis’ model of the covalent bond. 

‣ Valence Bond theory attempts to describe and predict covalent 
bonding by combining valence orbitals from Schrödinger’s atomic 
model.
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Quantum Covalent Bonds

‣ Lewis described the covalent bond with classical mechanics. 
‣ Thinking of an Electron as a particle. 

‣ Electrostatic attraction between adjacent electrons and nuclei. 

‣ Electrostatic repulsion between adjacent nuclei. 

‣ The bond is two nuclei hanging onto a pair of electron particles. 

‣ Schrödinger’s quantum model also predicts covalent bonding. 

‣ Thinking of Electron Density as a wave. 
‣ Overlap of the two orbitals allows both nuclei to stabilize the wave.   

‣ There is still electrostatic repulsion between the nuclei. 

‣ The bond is a region of electron density stabilized by both nuclei. 
‣ The overlap of atomic orbitals from each atom.  

‣ Solving Schrödinger’s equation for two nuclei predicts the observed  
bond distance of hydrogen.
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This suggests we should be able to describe a molecule 
by connecting adjacent atomic orbitals. 

Connecting valence atomic orbitals on adjacent atoms 
to predict molecular shape is valence bond theory.



Valence Bond Theory

‣ Connecting valence orbitals works. 

‣ Lewis & VSEPR theory predict a tetrahedral electronic structure around H2S and therefore 
a H—S—H bond angle of less than 109.5˚ 

‣ Valence Bond Theory predicts a 90˚ bond angle. 

‣ Experiment confirms a 90˚ bond angle. 

‣ Valence Bond Theory predicts molecular shape (in some cases better than VSEPR)
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‣ Combine hydrogen and sulfur atoms:



Valence Bond Theory 

‣ Trying the same thing with carbon gives a bad result. 

‣ We’d end up with CH2: 
‣ Carbon couldn’t fill it’s octet. 

‣ It’s 2pz orbital is left entirely empty, while the molecule is double booking electrons in carbon’s 2px 
and 2py orbitals. 

‣ It would predict a bent 90˚ structure for carbon. 

‣ This structure does not look stable. 

‣ Experiment does not support this result (this stuff doesn’t form). 

‣ Valence Bond theory works, but we’re still missing a piece. 
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Orbital Hybridization

‣ Carbon want’s to fill it’s valence shell by sharing electrons with hydrogen. 

‣ To do that it needs four unpaired electrons. 

‣ It’s ground state: [He] 2s
2
 2p

2
 doesn’t let it do that (with hydrogen). 

‣ If carbon absorbs some energy it can have an excited state of [He] 2s
1
 2p

3
. 

‣ This is not a stable state for a lone carbon atom. 

‣ But carbon, with those four hydrogens around it can stabilize four unpaired electrons in the n = 2 shell. 

‣ The shape of the orbitals change, to lower the overall energy of 4 unpaired electrons in one shell. 

‣ This changing of singly occupies orbitals to create covalent bonds with other atoms is called hybridization. 

‣ The new hybridized orbitals are named after the type and number of atomic orbitals combined to form them. 

‣ In this case, we used a single s orbital and three p orbitals to form four sp
3
 orbitals. 

‣ We never create or destroy orbitals, just reshape them. 
‣ So we always end up with the same number of orbitals we started with.
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Shape of sp3 Orbitals

‣ Using the same mathematics that 
predicted the shape of s and p 
orbitals, we can predict the best 
shape of 4 equal orbitals around 
carbon. 

‣ We find the shape defined by the 
four new sp

3
 hybridized orbitals is a 

tetrahedron. 

‣ The sp
3
 orbitals are the lowest 

energy state for the electrons around 
carbon only within the molecule. 

‣ The four H atoms are required to 
make this a lower energy 
configuration.
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Hybrid Orbitals

‣ Hybridized orbitals can be used 
to form covalent bonds or to 
contain an atoms lone pairs.
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VSEPR vs Valence Bond Theory

‣ VSEPR theory predicts how valence atoms distribute around a central atom.  

‣ By understanding the geometry of each atom, we can understand the 
geometry of the molecule. 

‣ VSEPR is based on classical mechanics and the Bohr atom. 
‣ Electrostatic attraction between opposite charges. 

‣ Electrostatic repulsion between like charges. 

‣ It’s a fast, crude approach that works well for many molecules. 
‣ It does not consider the wave nature of electrons. 

‣ It does not explain multiple bonds. 

‣ Bond angles and distances are less precise. 

‣ Valence Bond Theory is a different approach to understanding molecular 
shape. 
‣ Valence Bond Theory looks at how the valence orbitals of a central atom 

connect with orbitals of valence atoms to define shape. 

‣ It is based on quantum mechanics and Schrödinger’s atomic model. 

‣ VB theory starts with atomic orbitals and remixes them based on how valence 
atoms effect those orbitals. 

‣ Atomic orbitals as  

‣ Valence bond theory is consistent with VSEPR. 
‣ You can predict the hybridization of a central atom based on the number of 

electron regions. 

‣ It’s an alternative method for calculating the structure of molecules. 
‣ It’s more accurate than VSEPR if you do the quantum math. 

‣ It accounts for multiple bonds. 

‣ It explains bond rotation and structural isomers.
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Shape of sp2 orbitals 
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‣ CH2O is formed by three atoms coming up to a central carbon atom. 

‣ Those three atoms will avoid each other, by approaching carbon in a trigonal planar 
geometry. 
‣ Carbon will “reach out” to these atoms with three of it’s own orbitals. 

‣ This will hybridize the three orbitals in that plane, but they don’t get near the third p 
orbital. 

‣ This produces three sp
2
 orbitals and leaves one p orbital. 

‣ The three sp
2
 orbitals form a trigonal planar geometry. 

‣ We know the next step is to form a double bond between oxygen and carbon. 

‣ How does the left over p orbital make a double bond, without interfering with the existing 
single bond?

sp2 hybridized carbon

CH2O



σ and π bonds

‣ Single bonds are accomplished by end on overlap 
between orbitals. 

‣ End on overlap is called a σ bonds. 

‣ Adding a second bond between two atoms, requires 
another kind of overlap.  

‣ Edge on overlap is called a π bond. 

‣ σ are much stronger than π bonds (better overlap). 

‣ A double bond occurs when an atom has both σ and 
π overlap with another atom. 

‣ The π bond pulls the atoms closer than they would 
be with just a σ bond. 

‣ That creates better overlap, which creates a net 
bonding much stronger than two single bonds. 
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Shape of sp2 orbitals 
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‣ CH2O is formed by three atoms coming up to a central 
carbon atom. 

‣ Those three atoms will avoid each other, but coming in 
a trigonal planar geometry. 

‣ The will hybridize the three orbitals they touch, but 
they don’t get near the third p orbital. 

‣ This produces three sp2 orbitals and leaves one p 
orbital. 

‣ The three sp2 orbitals form a trigonal planar geometry. 

‣ We know the next step is to form a double bond 
between oxygen and carbon. 

‣ How does the left over p orbital make a double bond, 
without interfering with the existing single bond?



‣ The π bond exists both above and 
below the plane defined by the sp2 
orbitals. 

‣ The π bond is not the double bond.  

‣ The π bond and the σ together form 
the double bond. 

‣ A double bond is always one σ and 
one π bond.



‣ σ bonds can rotate and still maintain orbital overlap.   
‣ Molecules can readjust their extended shape by rotation around σ bonds. 

‣ π bonds cannot rotate without breaking overlap. 
‣ Molecules cannot readjust their shape by rotating around π bonds. 

‣ As a result there are two structures of dichloroethene that do not interconvert. 

‣ They are different substances with difference chemical properties. 

‣ Isomers are different substances that have the same composition and connectivity, but different shapes.



Shape of sp orbitals 
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‣ C2H2 is formed by two atoms coming on either 
side of a single carbon. 

‣ Those two atoms will avoid each other, but 
coming in a linear geometry around each carbon. 

‣ The will hybridize the two orbitals they touch, 
but they don’t get near the two p orbital not in 
their path. 

‣ This produces two sp orbitals and leaves two p 
orbitals. 

‣ The two sp orbitals form a trigonal planar 
geometry. 

‣ The next step is forming a double and then triple 
bond.

2x

2x



Structure of a Triple Bond

‣ One π bond exists both above and below the xz plane. 

‣ One π bond exists both above and below the xy plane 

‣ A triple bond is always composed of a σ and two π bonds. 
‣ (This structure explains why triple bonds need to be treated as 

one electron domain in VSEPR)
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Applying Valence Bond Theory

‣ Valence Bond theory let’s 
you see how electrons 
shape the molecule. 

‣ It explains restricted bond 
rotation.  

‣ It shows you the position of 
exposed electron pairs (lone 
pairs and multiple bonds). 

‣ You’ll need this theory in 
220 and beyond to 
understand reaction 
mechanisms.

32
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Higher Order Hybridizations

‣ Atoms of first and second period elements, 
will only be sp3, sp2 or sp hybridized.  

‣ Third period and below elements can 
hybridize d orbitals as well.  

‣ We will not be discussing d orbitals in 
bonding this semester, but you should be able 
to identify the hybridization of these atoms. 

‣ You already know their electronic shapes.
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sp3d Hybridization

‣ A trigonal bipyramidal electronic 
structure is the result of combining: 
‣ one s orbital 

‣ three p orbitals 

‣ one d orbital 

‣ Five sp3d hybrid orbitals are 
produced.
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sp3d2 Hybridization

‣ A trigonal bipyramidal electronic structure is the result of combining: 
‣ one s orbital 

‣ three p orbitals 

‣ two d orbitals 

‣ Five sp3d2 hybrid orbitals are produced.
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VSEPR Predicts Hybridization

‣ The hybridization of an atom 
produces it’s electronic 
structure. 

‣ Since you can predict the 
electronic structure of an 
atom from VSEPR, you can 
predict it’s hybridization.
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VSEPR Predicts Hybridization

‣ The hybridization of an atom produces it’s 
electronic structure. 

‣ Since you can predict the electronic structure of an 
atom from VSEPR, you can predict it’s 
hybridization. 

‣ Find the shape and then hybridization of … 

‣ Nitrogen in HCN? 

‣ Bromine in BrCl3? 

‣ Phosphorus in PH3? 

‣ Carbon in CH2CHNH3? 

‣ Xenon in XeF4? 

‣ The carbons in H2CCCH2?
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VSEPR Predicts Hybridization

‣ The hybridization of an atom 
produces it’s electronic 
structure. 

‣ Since you can predict the 
electronic structure of an 
atom from VSEPR, you can 
predict it’s hybridization.
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A Third Theory

‣ VSEPR Theory has no quantum mechanics or any kind of 
calculation. 
‣ It’s a qualitative, quick and dirty, way of estimating 

shape.  

‣ It’s balloon theory. 

‣ Valence Bond (VB) Theory starts with the QM calculated 
shape of atomic orbitals, then stretches them to make 
them work with other atoms in a molecule. 

‣ It’s like calculating how a car behaves at one 
intersection, using that behavior to estimate how it will 
move through successive intersections then saying 
that’s how it will move through a city. 

‣ It’s better than balloons, but it’s still a hack. 

‣ It's a hybrid approach making atomic orbitals work in a 
molecule. 

‣ But when we make a molecule the valence electrons of 
the atoms can spread over multiple atoms. 

‣ Molecular Orbital (MO) Theory is a third tool for 
understanding molecular behavior. 

‣ MO Theory does not limit valence electrons to a single 
atom. 

‣ It solves the Schrödinger equation considering all 
valence electrons and all atoms in the molecule at 
once. 

‣ Instead of working with atomic orbitals, it produces 
molecular orbitals.



Molecular Orbital Theory

‣ MO Theory calculates the behavior of electrons over all 
atoms in the molecule at once. 
‣ Electrons are not confined to one atom anymore. 

‣ When you model how each electron moves, how it’s wave 
function behaves, you use data from all atoms in the 
molecule at once. 

‣ It’s like calculating how a car will be influenced by all 
the traffic lights, other cars, and street signs as it moves 
around a city. 

‣ If you can model all the things that influence the car, and 
know how it will react to each, you exactly predict a cars 
path. 
‣ The equations are much more complicated. 

‣ It produces a much more complete description of a 
molecule. 

‣ It's too complicated to solve by the method we use for 
atoms.   
   (Even with a personal super computer like a Mac) 

‣ But we even if we can’t solve the wave functions, we can 
still use them to explore the molecule.
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Molecular Orbital Theory

‣ Valence electrons spread out over multiple atoms. 

‣ They work in pairs (one spin up; one spin down). 

‣ They’re pulled by each nucleus, and try to avoid other pairs of 
electrons. 

‣ We describe their behavior with wave functions (𝜓1, 𝜓2, 𝜓3, …). 

‣ The wave functions are shaped by the 3D position of each nucleus. 

‣ Each wave function has variables for the x, y, z position of each atom. 

‣ And more variables that describe the shape of each electron orbital. 

‣ There are hundreds of variables for each wave function. 

‣ And changing one, in one wave function, changes all the other wave 
functions. 

‣ It’s impossible to solve for all these variables at once.  

‣ But we can calculate the energy of any combination of variables.    

‣ And once we know the energy of each occupied orbital, we can get 
the overall energy of the molecule. 
‣ Etotal = E1 + E2 + E3 … 

‣ So we can make a guess as to a molecular shape and find out how 
stable that shape is relative to another guess. 

‣ And we know nature will arrange those atoms in the most stable 
orientation possible. 

‣ So we can compare any two shapes and  
decide which one nature would prefer.

H!ψ = Eψ

4.33 kJ/mol

1.37 kJ/mol



Molecular Orbital Theory

‣ We can make a guess as to a molecular shape 
and find out how stable that shape is relative 
to another one. 

‣ We can start with a “good guess” for the right 
position of nuclei (based on knowledge of it’s 
connectivity from Lewis analysis or other 
methods). 
‣ And a good guess for the right shape of the 

electron orbitals. 

‣ We optimize the orbitals to find out what the 
total energy of orbitals and thus the structure 
is. 
‣ The shape of the orbitals we find, helps us 

understand how the molecule will behave. 

‣ We see where it want’s electrons, where it has 
a build up of them. 

‣ Where it’s strong and where it’s weak. 

‣ Where it can bend or twist. 

‣ Then we twist the molecule a touch, 
recalculate the position of the nuclei and do it 
again. 

‣ Each optimized adjustment is another step 
along a map. 

‣ The deepest valley in that map is the lowest 
possible energy structure. 

‣ That’s the structure nature has already found.
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Molecular Orbital Theory

‣ We can make a guess as to a molecular shape 
and find out how stable that shape is relative 
to another one. 

‣ We can start with a “good guess” for the right 
position of nuclei (based on knowledge of it’s 
connectivity from Lewis analysis or other 
methods). 
‣ And a good guess for the right shape of the 

electron orbitals. 

‣ We optimize the orbitals to find out what the 
total energy of orbitals and thus the structure 
is. 
‣ The shape of the orbitals we find, helps us 

understand how the molecule will behave. 

‣ We see where it want’s electrons, where it has 
a build up of them. 

‣ Where it’s strong and where it’s weak. 

‣ Where it can bend or twist. 

‣ Then we twist the molecule a touch, 
recalculate the position of the nuclei and do it 
again. 

‣ Each optimized adjustment is another step 
along a map. 

‣ The deepest valley in that map is the lowest 
possible energy structure. 

‣ That’s the structure nature has already found.
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Valence Bond & MO Theories

‣ Molecular Shape and Polarity 

‣ Polar Bond & Polar Molecules 

‣ Net Dipole Moment 

‣ Adding dipoles: vector addition 

‣ in one dimension 

‣ two & three dimensions 

‣ try some examples 

‣ Valence Bond Theory 
‣ Quantum View of Covalent Bonds 

‣ Bonding with Schrödinger’s Quantum 
Atom 

‣ Orbital Overlap is a Covalent Bond  

‣ Forming Molecules w/ Quantum Atoms 

‣ H2S & H2C 

‣ Hybridization of Atomic Orbitals 
‣ Atomic Orbitals inside a molecule are 

not the same as the atom by itself. 

‣ sp3 orbitals 

‣ Sigma & Pi bonding: sp2 & sp orbitals 

‣ d-Orbital Hybridization: sp3d & sp3d2 

‣ Determining Hybridization 
‣ Look at electronic shape of the atom 

‣ Molecular Orbital Theory 
‣ Electron Delocalization 

‣ Linear combinations of atomic s orbitals 
‣ constructive:  bonding 

‣ destructive:  antibonding 

‣ Molecular orbital diagrams 
‣ H2, He2, He2+ 

‣ bond order 

‣ Linear combinations of atomic p orbitals 
‣ shapes of bonding and antibonding 

orbitals 

‣ Period 2 homonuclear diatomics 

‣ 2s-2p mixing 
‣ paramagnetism and diamagnetism 

‣ liquid oxygen 

‣ Period 2 heteronuclear diatomic 
molecules 

‣ Polyatomic molecules 
‣ electron delocalization in ozone, benzene
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MO Theory, LCAO Strategy 

‣ Getting good energies for each shape starts with guessing how electron orbitals 
might be smeared over a molecule. 

‣ How do we make a good guess for molecular orbitals? 

‣ Different strategies use different initial guesses for the molecular wave functions. 

‣ The simplest MO model involves combining orbitals from adjacent atoms. 
‣ Like when we mixed orbitals on the same atom, to create hybrid orbitals. 

‣ LCAO (linear combination of atomic orbitals) just adds to adjacent orbitals to form 
two new molecular orbitals. 
‣ First add them in phase. 

‣ Constructive addition (interference) 

‣ Then add the with opposite phase. 
‣ Destructive addition (interference) 

‣ This works really well. 

‣ When you combine orbitals, you always end up with the same number of orbitals 
and same net energy. 

‣ But depending on the electron configuration within those orbitals, the atoms 
might end up in a lower energy state.



MO Theory, LCAO Strategy 

‣ When you combine orbitals, you always end up with 
the same number of orbitals and same net energy. 

‣ But depending on the electron configuration within 
those orbitals, the atoms might end up in a lower 
energy state. 

‣ When two s orbitals form a bonding orbital we get a 
sigma bond and we name that orbital after the AO’s 
used to form it.  Example σ1s 

‣ The complementary anti bonding orbital is named the 
same way, except we add an asterisk.  Example σ*1s 

‣ Even without optimization, LCAO strategy can predict 
the bond order that will likely form between atoms. 

‣ For example, consider the H2 molecule. 

H • • H

H—H

H •       • H 

σ1s

σ*1s



MO Theory, LCAO Strategy

‣ When you combine orbitals, you always end up with the same 
number and same net energy. 

‣ Constructive addition creates an orbital that allows electrons 
to flow between the two atoms — a bonding configuration. 
‣ Bonding configurations are more stable (lower energy). 

‣ Destructive addition creates an orbital that isolates the 
electrons from each atom — an anti bonding configuration.  
‣ Anti-Bonding configurations are less stable (higher energy). 

‣ You can use orbital diagrams to predict how many electrons 
can be shifted to lower energy, bonding orbitals, and how many 
get stuck in higher energy anti-bonding orbitals. 

‣ If more electrons end up in bonding orbitals than end up in 
anti-bonding orbitals the atoms prefer to be bonded. 

‣ You can predict the bond order of a molecule by subtracting 
the anti-bonding electrons from the bonding electrons and 
dividing the result by two.
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Bond Order = Bonding e's - Anti-Bonding e's
2

H2  Bond Order = 2 - 0
2

= 1 (single bond)

MO predicts H2 is 
more stable than 

two H atoms



MO Theory, LCAO Strategy

‣ When you combine orbitals, you always end up with the same 
number and same net energy. 

‣ Constructive addition creates an orbital that allows electrons 
to flow between the two atoms — a bonding configuration. 
‣ Bonding configurations are more stable (lower energy). 

‣ Destructive addition creates an orbital that isolates the 
electrons from each atom — an anti bonding configuration.  
‣ Anti-Bonding configurations are less stable (higher energy). 

‣ You can use orbital diagrams to predict how many electrons 
can be shifted to lower energy, bonding orbitals, and how many 
get stuck in higher energy anti-bonding orbitals. 

‣ If more electrons end up in bonding orbitals than end up in 
anti-bonding orbitals the atoms prefer to be bonded. 

‣ You can predict the bond order of a molecule by subtracting 
the anti-bonding electrons from the bonding electrons and 
dividing the result by two.
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Bond Order = Bonding e's - Anti-Bonding e's
2

He2  Bond Order = 2 - 2
2

= 0 (no bond formed)

MO predicts He2 
is less stable than 

two He atoms



MO Theory, LCAO Strategy

‣ Only valence electrons are used to 
form molecular orbitals.

Be2  Bond Order = 2 - 2
2

= 0 (no bond formed)

Li2  Bond Order = 2 - 0
2

= 1 (single bond formed)



Valence Bond & MO Theories

‣ Molecular Shape and Polarity 
‣ Polar Bond & Polar Molecules 

‣ Net Dipole Moment 

‣ Adding dipoles:  vector addition 
‣ one dimension 

‣ two dimensions 

‣ three dimensions 

‣ common cases 

‣ Valence Bond Theory:  Orbital Overlap as a 
Covalent Bond 
‣ Valence Bond theory 

‣ interaction energy diagram 

‣ overlap of atomic orbitals 

‣ shape determined by geometry of overlapping 
orbitals 

‣ Valence Bond Theory:  Hybridization of Atomic 
Orbitals 

‣ Hybridization and hybrid orbitals 
‣ sp3 

‣ 4 equivalent orbitals 

‣ tetrahedral arrangement 

‣ sp2 
‣ 3 equivalent orbitals with a p orbital remaining 

‣ trigonal planar arrangement 

‣ sigma bonds and pi bonds 

‣ rotation restricted for pi bonds 

‣ sp hybridization 
‣ 2 equivalent orbitals + 2 p orbitals remaining 

‣ sp3d hybridization 
‣ 5 equivalent hybrid orbitals 

‣ sp3d2 hybridization 
‣ 6 equivalent hybrid orbitals 

‣ Determining hybridization and drawing valence 
bond models 

‣ Lewis structure 

‣ VSEPR geometry 

‣ hybridization 

‣ molecular sketch 
‣ hybrid orbitals 

‣ sigma and pi bonds  

‣ Molecular Orbital Theory:  Electron 
Delocalization 
‣ Linear combinations of atomic s orbitals 

‣ constructive:  bonding 

‣ destructive:  antibonding 

‣ Molecular orbital diagrams 
‣ H2, He2, He2+ 

‣ bond order 

‣ Linear combinations of atomic p orbitals 
‣ shapes of bonding and antibonding orbitals 

‣ Period 2 homonuclear diatomics 

‣ 2s-2p mixing 
‣ paramagnetism and diamagnetism 

‣ liquid oxygen 

‣ Period 2 heteronuclear diatomic molecules 

‣ Polyatomic molecules 
‣ electron delocalization in ozone, benzene
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Valence Bond & MO Theories

‣ Molecular Shape and Polarity 

‣ Polar Bond & Polar Molecules 

‣ Net Dipole Moment 

‣ Adding dipoles: vector addition 

‣ in one dimension 

‣ two & three dimensions 

‣ try some examples 

‣ Valence Bond Theory 
‣ Quantum View of Covalent Bonds 

‣ Bonding with Schrödinger’s Quantum 
Atom 

‣ Orbital Overlap is a Covalent Bond  

‣ Forming Molecules w/ Quantum Atoms 

‣ H2S & H2C 

‣ Hybridization of Atomic Orbitals 
‣ Atomic Orbitals inside a molecule are 

not the same as the atom by itself. 

‣ sp3 orbitals 

‣ Sigma & Pi bonding: sp2 & sp orbitals 

‣ d-Orbital Hybridization: sp3d & sp3d2 

‣ Determining Hybridization 
‣ Look at electronic shape of the atom 

‣ Molecular Orbital Theory 
‣ Electron Delocalization 

‣ Linear combinations of atomic s orbitals 
‣ constructive:  bonding 

‣ destructive:  antibonding 

‣ Molecular orbital diagrams 
‣ H2, He2, He2+ 

‣ bond order 

‣ Linear combinations of atomic p orbitals 
‣ shapes of bonding and antibonding 

orbitals 

‣ Period 2 homonuclear diatomics 

‣ 2s-2p mixing 
‣ paramagnetism and diamagnetism 

‣ liquid oxygen 

‣ Period 2 heteronuclear diatomic 
molecules 

‣ Polyatomic molecules 
‣ electron delocalization in ozone, benzene
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MO Theory π Bonding

‣ p orbitals on adjacent atoms combine…   
‣ head on to form a σ bond 

‣ sideways to form a π bond 

‣ Each set of p orbitals combine to make a pair of molecular 
orbitals. 

‣ The molecular orbitals are named according to the atomic 
orbitals that make them and the bond that results. 

‣ Two 2px orbitals combine to form:  
   σ2p and σ*2p orbitals 

‣ Two 2py and two 2pz orbitals combine to form: 
  two π2p and two π*2p orbitals
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Energy Levels of n=2 Orbitals

‣ The relative energy of molecular orbitals is not 
easy to predict. 

‣ For n=2 diatomic molecules there is a switch 
between N and O. 

‣ N and below π is lower than σ bonding orbitals. 

‣ O and above σ is lower than π bonding orbitals.
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Nitrogen Gas (N2)

‣ Nitrogen gas forms a triple bond. 

‣ Nitrogen gas is diamagnetic.
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N2  Bond Order = 8 - 2
2

= 3 (triple bond)

No unpaired electrons



Oxygen Gas (O2)

‣ Oxygen Gas form a double bond. 

‣ Oxygen Gas is paramagnetic.
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O2  Bond Order = 8 - 4
2

= 2 (double bond)

Two unpaired electrons



Nitrogen Monoxide (NO)

‣ For molecules composed of different elements, 
electronegativity affects orbital stability. 

‣ More electronegative elements better stabilize 
electrons. 

‣ More electronegative elements contributed orbitals 
are lower in energy. 

‣ Molecules favor those orbitals when blending. 

‣ Bonding orbitals are composed more of the more 
electronegative elements orbital. 

‣ So more electron density ends up on the more 
electronegative atom. 

‣ Producing a dipole.
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Valence Bond & MO Theories

‣ Molecular Shape and Polarity 

‣ Polar Bond & Polar Molecules 

‣ Net Dipole Moment 

‣ Adding dipoles: vector addition 

‣ in one dimension 

‣ two & three dimensions 

‣ try some examples 

‣ Valence Bond Theory 
‣ Quantum View of Covalent Bonds 

‣ Bonding with Schrödinger’s Quantum 
Atom 

‣ Orbital Overlap is a Covalent Bond  

‣ Forming Molecules w/ Quantum Atoms 

‣ H2S & H2C 

‣ Hybridization of Atomic Orbitals 
‣ Atomic Orbitals inside a molecule are 

not the same as the atom by itself. 

‣ sp3 orbitals 

‣ Sigma & Pi bonding: sp2 & sp orbitals 

‣ d-Orbital Hybridization: sp3d & sp3d2 

‣ Determining Hybridization 
‣ Look at electronic shape of the atom 

‣ Molecular Orbital Theory 
‣ Electron Delocalization 

‣ Linear combinations of atomic s orbitals 
‣ constructive:  bonding 

‣ destructive:  antibonding 

‣ Molecular orbital diagrams 
‣ H2, He2, He2+ 

‣ bond order 

‣ Linear combinations of atomic p orbitals 
‣ shapes of bonding and antibonding 

orbitals 

‣ Period 2 homonuclear diatomics 

‣ 2s-2p mixing 
‣ paramagnetism and diamagnetism 

‣ liquid oxygen 

‣ Period 2 heteronuclear diatomic 
molecules 

‣ Polyatomic molecules 
‣ electron delocalization in ozone, benzene
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Water (H2O)

‣ Larger molecules, even those as simple as water or 
ammonia require a huge number of calculations to 
identify their molecular orbitals. 

‣ We won’t be able to do these with pen and paper, a 
super computer is required to process all the 
calculations. 

‣ Like a Mac. 

‣ But analyzing the results helps us understand the 
behavior of molecules. 

‣ We can predict the number of bonds in a molecule and 
see how it will interact with other molecules. 

‣ HOMO (highest occupied molecular orbital) is where 
the atom is most likely to loose electron density, or 
donate it to another molecule. 

‣ LUMO (lowest unoccupied molecular orbital) is where 
the atom is most likely to receive electron density 
from another molecule. 
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LUMO

HOMO

This is just for 
illustration, you aren’t 
expected to be able to 

reproduce these 
calculations.



Ammonia (NH3)

‣ Larger molecules, even those as simple as water or 
ammonia require a huge number of calculations to 
identify their molecular orbitals. 

‣ We won’t be able to do these with pen and paper, a 
super computer is required to process all the 
calculations. 

‣ Like a Mac. 

‣ But analyzing the results helps us understand the 
behavior of molecules. 

‣ We can predict the number of bonds in a molecule and 
see how it will interact with other molecules. 

‣ HOMO (highest occupied molecular orbital) is where 
the atom is most likely to loose electron density, or 
donate it to another molecule. 

‣ LUMO (lowest unoccupied molecular orbital) is where 
the atom is most likely to receive electron density 
from another molecule. 
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LUMO

HOMO

This is just for 
illustration, you aren’t 
expected to be able to 

reproduce these 
calculations.



Ozone

‣ Lewis models require two 
structures to show the 
experimental shape of ozone. 

‣ Valence Bond Theory predicts a 
single and a double bond. 

‣ MO Theory shows us that each 
oxygen has an equal 1.5 bond 
order bond and that electron 
density is found mostly above 
and below the plane of the 
three oxygens.
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Benzene

‣ MO Theory shows us multiple double bonds act as a conduit for electron flow 
between atoms. 

‣ In Benzene we see a circular pattern of orbitals above and below plane of the 
carbons. 

‣ In experiment we find each bond has a bond distance corresponding to a 1.5 bond 
order and we can even detect e-m fields generated by a circular flow of electrons.  
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Value of MO Theory

‣ It can provide an exact 3D 
structure of very complicated 
structures. 

‣ Although this requires powerful 
computation resources, the 
results are much more accurate 
than any other theory. 

‣ Even simple MO calculations can 
show us bond order and magnetic 
tendencies. 

‣ HOMO-LUMO  

‣ Identifying the highest occupied 
and lowest unoccupied orbitals 
help us understand points of 
reactivity or vulnerability in 
molecules. 

‣ The complete MO picture helps 
us understand how molecules can 
bend, twist, and allow electrons 
to flow over their surface.
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Valence Bond & MO Theories

‣ Molecular Shape and Polarity 

‣ Polar Bond & Polar Molecules 

‣ Net Dipole Moment 

‣ Adding dipoles: vector addition 

‣ in one dimension 

‣ two & three dimensions 

‣ try some examples 

‣ Valence Bond Theory 
‣ Quantum View of Covalent Bonds 

‣ Bonding with Schrödinger’s Quantum 
Atom 

‣ Orbital Overlap is a Covalent Bond  

‣ Forming Molecules w/ Quantum Atoms 

‣ H2S & H2C 

‣ Hybridization of Atomic Orbitals 
‣ Atomic Orbitals inside a molecule are 

not the same as the atom by itself. 

‣ sp3 orbitals 

‣ Sigma & Pi bonding: sp2 & sp orbitals 

‣ d-Orbital Hybridization: sp3d & sp3d2 

‣ Determining Hybridization 
‣ Look at electronic shape of the atom 

‣ Molecular Orbital Theory 
‣ Electron Delocalization 

‣ Linear combinations of atomic s orbitals 
‣ constructive:  bonding 

‣ destructive:  antibonding 

‣ Molecular orbital diagrams 
‣ H2, He2, He2+ 

‣ bond order 

‣ Linear combinations of atomic p orbitals 
‣ shapes of bonding and antibonding 

orbitals 

‣ Period 2 homonuclear diatomics 

‣ 2s-2p mixing 
‣ paramagnetism and diamagnetism 

‣ liquid oxygen 

‣ Period 2 heteronuclear diatomic 
molecules 

‣ Polyatomic molecules 
‣ electron delocalization in ozone, benzene

69

⊕



Questions?
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