| Acid | Conj. Base | p <i>K</i> a Comment | |---|--|---| | SO_3 / FSO_3 H/SbF $_5$
HF / SbF $_5$
F_3 CSO $_3$ H | SbF ₆ ⁻
SbF ₆ ⁻
F ₃ CSO ₃ ⁻ | -?? Super Acids all too strong to measure | | HCIO ₄ | CIO ₄ ⁻ | –10 | | HI | - | organic acid sulfuric acid hydrobromic acid hydrobromic acid | | P H ₂ SO ₄ | HSO ₄ ⁻ | sulfuric acid sulfuric acid hydrobromic acid | | Strength H ₂ SO ₄ H ₂ SO ₄ H ₃ C ₁ C ₁ C ₂ C ₁ C ₁ C ₂ C ₁ C ₂ C ₂ C ₃ C ₄ C ₄ C ₂ C ₂ C ₄ C ₄ C ₂ C ₄ C ₄ C ₄ C ₅ C ₄ C ₅ C ₄ C ₅ C ₅ C ₄ C ₅ C ₅ C ₄ C ₅ | Br ⁻ | ਲ੍ਹੀ ਨੋਂ –9 hydrobromic acid | | R C O + | R ^{−C} ≈o: | -8 protonated aldehydes | | OR'
R → C N O + | OR'
R∕ ^C ≈o• | -7 protonated esters | | HCI | CI- | _7 hydrochloric acid | | R'
I
R C O + | R'
I
R ^C ≈o· | -7 protonated ketones | | OH
I
R C SO + | OH
R ^{-C} ≈o: | -6 protonated carboxylic acids | | x————————————————————————————————————— | x—(| -6 protonated phenols | | ON OH SON O aka TsOH | H ₃ C | -3 sulfonic acids | | H
l+
O
R R' | R'O'R' | _3 protonated ethers | | H
I ₊
O
R · · · H | R ^O H | -2 protonated alcohols | | H ₃ O+ | $\rm H_2O$ | -1.74 hydronium; H+(aq) | | HNO_3 | NO_3^- | -1.3 nitric acid | | HSO ₄ - | SO ₄ ²⁻ | 1.99 second H of sulfuric acid | | H–F
HNO | F-
NO | 3.18 hydrofluoric acid3.3 nitrous acid | | HNO ₂
Ḥ | NO ₂ - | 3.3 nitrous acid | | X N-H | x N-H | -6 to +5 anilines; pKa very sensitive to ring substituents | | Acid | Conj. Base | | p <i>K</i> a | Comment | |---|--|-----------------------------|--------------|---| | R C O-H | °0:
R∕°°0: | | 4.0 to 5. | 0 carboxylic acids | | H ₂ CO ₃ | HCO ₃ - | | 6.35 | carbonic acid | | H ₂ S | HS- | | 7.00 | hydrogen sulfide | | Increasing Acid Strength Strength H H H C C C C CH ³ NH ⁴ + | H ₃ C C C CH ₃ | Increasing Base
Strength | 9.00 | 2,4-pentandione | | ···· 4 | NH ₃ | easing B
Strength | 9.24 | ammonium ion | | x—(| x- ()-:: [⊝] | Incre | 4–11 | depends on substitution plain phenol has a pka=10 | | R-CH ₂ -NO ₂ | R–CH–NO₂ | | 10.0 | aliphatic nitro | | HCO ₃ - | CO ₃ - | | 10.3 | bicarbonate | | H ₃ C C OEt | O O II O II C OEt | | 11.0 | ethyl acetoacetate | | O O O II II II C C OEt | O'' O | | 13.0 | diethyl malonate | | H–O–H | OH- | | 15.7 | water p <i>K</i> a | | H | Ę; ⊝ _H | | 15.0 | cyclopentadiene: World's
Strongest Carbon Acid!! | | R C N H | $ \begin{array}{c} O \\ C \\ N \end{array} $ | | 17.0 | amides | | R– <mark>Ö</mark> –H | R- 0: | | 16-19 | alcohols, ethanol $pKa = 16$ | | R C C H | O | | 20-21 | alpha H of ketones | | O H
RO C C H | RO C C H | | 25 | alpha H of esters | | H
R-CH ₂ -CN | ⊝ H
R–CH–CN | | 25 | alpha to nitrile | | R—C ≡ C−H | R—C <u>≕</u> C; | | 25 | terminal alkynes.
The electrons are in an
sp hybridized orbital |